formlabs 😿

Gamme de matériaux

Des matériaux fonctionnels au rendu impeccable

Préparé au 1er trimestre 2021

LISTE DES MATÉRIAUX DE RÉSINE SLA

ÉPAISSEUR DE COUCHE RÉSINE **CARACTÉRISTIQUES EN MICRONS STANDARD** p.5 Clear Resin 100 μm 50 μm 25 µm Haute translucidité et transparence White Resin 100 μm 50 μm Détails fins, finition blanc mat **Grey Resin** 160 μm 100 μm 50 μm 25 µm Détails fins, finition gris mat p.5 **Black Resin** 100 μm 50 μm 25 µm Détails fins, finition noir mat Gamme complète Color Kit Resin 100 μm 50 μm 25 μm de couleurs personnalisées Draft Resin p.7 200 μm 100 μm S'imprime jusqu'à 4 fois plus vite **TECHNIQUE** p.9 **High Temp Resin** 100 μm 50 μm 25 μm Haute stabilité thermique p.10 **Grey Pro Resin** 100 μm 50 μm Matériau polyvalent pour le prototypage p.12 **RIGID RESIN** p.14 Pièces rigides et robustes de Rigid 10K Resin 100 μm 50 μm p.15 qualité industrielle Rigid 4000 Resin 100 μm 50 μm Pièces rigides et robustes pour l'ingénierie p.17 **TOUGH RESIN ET DURABLE RESIN** p.19 Tough 2000 Resin 100 μm 50 μm Prototypage rigide, solide et robuste p.20 Tough 1500 Resin 100 μm 50 μm Prototypage rigide, flexible et résistant p.22 **Durable Resin** 100 μm 50 μm Matériau de prototypage souple et flexible p.24

FLEXIBLE RESIN ET ELASTIC RESIN			p.26
Flexible 80A Resin	100 μm 50 μm	Pièces flexibles et dures à lent retour élastique	p.27
Elastic 50A Resin	100 µm	Pièces flexibles et souples à retour élastique rapide	p.29

RÉSINES SPÉCIALES			p.31
Ceramic Resin	100 μm 50 μm	Matériau céramique expérimental	p.32
Rebound Resin	200 μm	Matériau TPU à haute résistance pour utilisation finale	p.34

LISTE DES MATÉRIAUX DE RÉSINE SLA

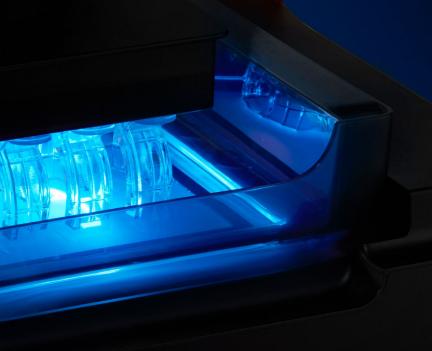
ÉPAISSEUR DE COUCHE

RÉSINE	EN MICRONS			CARACTÉRISTIQUES		
SECTEUR DENTAIRE					p.36	
Model Resin	100 μm	50 μm	25 μm	Réalisation de modèles et production de plaques occlusales	p.37	
Draft Resin	200 μm	100 μm		S'imprime jusqu'à 4 fois plus vite	p.39	
Castable Wax Resin	50 μm	25 μm		Une coulée fiable avec un brûlage propre	p.41	
Surgical Guide Resin	100 μm	50 μm		Guides d'implants de première qualité	p.43	
IBT Resin	100 μm			Résine photopolymère biocompatible pour les plateaux de collage indirect	p.45	
Dental LT Clear V2 Resin	100 μm			Gouttières et plaques occlusales à long terme	p.47	
Dental LT Clear V1 Resin	100 μm			Gouttières et plaques occlusales à long terme	p.49	
Custom Tray Resin	200 μm			Porte-empreintes personnalisés à impression rapide	p.51	
Temporary CB Resin	50 μm			Restaurations temporaires solides et précises	p.53	
Permanent Crown Resin	50 μm			Restaurations permanentes solides et précises	p.55	
Denture Base Resin + Denture Teeth Resin	50 μm			Prothèses dentaires imprimées directement	p.57	
Soft Tissue Resin (Pack dentaire)	100 μm	50 μm		Flexible 80A Resin + Kit Color Pigment	p.59	

SECTEUR MÉDICAL				p.61
BioMed Clear Resin	100 µm		Pour un contact corporel à long terme	p.62
BioMed Amber Resin	100 µm	50 μm	Pour un contact corporel à long terme	p.64

JOAILLERIE				p.66
Castable Wax 40 Resin	50 μm	25 μm	Sertissages nets, griffes fines, anneaux lisses, détails fins en surface	p.67
Castable Wax Resin	50 μm	25 μm	Une coulée fiable avec un brûlage propre	p.69

LISTE DES MATÉRIAUX SLS


POUDRE

STANDARD			p.71
Nylon 12 Powder	110 µm	Pièces de production solides et durables	p.72
Nylon 11 Powder	110 µm	Pièces de production solides et durables	p.74

TECHNOLOGIE D'IMPRESSION

SLA Stéréolithographie

PRINTING

PUMP HOUSING

4 h 28 min ◆ Layer 459 / 682

Résines standard

Matériaux pour un prototypage rapide haute résolution

Haut niveau de détails. Pour des applications exigeantes, nos résines formulées avec soin permettent de reproduire les détails les plus fins de votre modèle.

Robustesse et précision. Nos résines permettent de fabriquer des pièces robustes et précises, et conviennent parfaitement au prototypage rapide et au développement de produits.

Finition de surface lisse. Parfaitement lisses en sortie d'impression, les pièces réalisées sur les imprimantes Formlabs présentent le fini et le poli de surface d'un produit final.

* Peut ne pas être disponible partout

LGPWH04

Préparé le 09/ 04/ 2016

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

PROPRIÉTÉS DU MATÉRIAU

Résines standard

Clear Resin, White Resin, Grey Resin, Black Resin et Color Kit partagent les propriétés suivantes.

	MÉTRIQUE 1		IMPÉRIAL 1		MÉTHODE
	Brut ²	Post-polymérisé ³	Brut ²	Post-polymérisé ³	
Propriétés en traction					,
Résistance à la rupture par traction	38 MPa	65 MPa	5510 psi	9380 psi	ASTM D638-14
Module de traction	1,6 GPa	2,8 GPa	234 ksi	402 ksi	ASTM D638-14
Allongement à la rupture	12 %	6 %	12 %	6 %	ASTM D638-14
Propriétés en flexion					
Module de flexion	1,3 GPa	2,2 GPa	181 psi	320 psi	ASTM D 790-15
Propriétés de résistance aux ch	ocs				
Résistance au choc Izod	16 J/m	25 J/m	0,3 ft-lbf/in	0,46 ft-lbf/in	ASTM D256-10
Propriétés thermiques					
Température de fléchissement sous charge à 1,8 MPa	43 °C	58 °C	109 °F	137 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	50 °C	73 °C	121 °F	134 °F	ASTM D 648-16

de son orientation pendant l'impression, des paramètres d'impression et de la température.

COMPATIBILITÉ AVEC LES SOLVANTS

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %
Acide acétique à 5 %	<1	Huile minérale (lourde)	<1
Acétone	Échantillon fissuré	Huile minérale (légère)	< 1
Eau de Javel (NaOCl ~5 %)	<1	Eau salée (3,5 % NaCl)	<1
Acétate de butyle	<1	Skydrol 5	1
Carburant diesel	<1	Solution d'hydroxyde de sodium (0,025 % pH 10)	<1
Éther monométhylique de diéthylène-glycol	1,7	Acide fort (HCl concentré)	Échantillon déformé
Huile hydraulique	< 1	Eau	<1
Peroxyde d'hydrogène (à 3 %)	< 1	Xylène	<1
Isooctane (essence moteur)	< 1		
Alcool isopropylique	<1		

¹ Les propriétés du matériau peuvent varier ² Les données ont été recueillies à partir en fonction de la géométrie de la pièce, de pièces brutes imprimées sur la Form 2, pièces imprimées sur la Form 2, avec les avec les paramètres de Clear Resin, à une épaisseur de couche de 100 µm, sans traitement supplémentaire.

³ Les données ont été obtenues à partir de paramètres Clear Resin à 100 µm, et après post-polymérisation sous LED à 405 nm et 1,25 mW/cm², à 60 °C pendant 60 minutes.

Draft Resin

Draft Resin pour un prototypage vraiment rapide

Draft Resin s'imprime jusqu'à quatre fois plus vite que les matériaux Formlabs standard, ce qui en fait la résine idéale pour des prototypes initiaux et des itérations rapides permettant de commercialiser les produits plus rapidement. Les pièces imprimées en Draft Resin présentent une finition lisse de couleur grise et une précision élevée. Utilisez le paramètre « 200 microns » pour une impression rapide ou le paramètre « 100 microns » pour les modèles présentant des détails plus fins.

Démonstrations d'impression 3D en direct

Applications pour de grands volumes de production

Itérations de conception rapides

FLDRGR02

* Peut ne pas être disponible partout.

Préparé le 07/ 10/ 2020 **Révision 01** 07/ 10/ 2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1				IMPÉRIA	MÉTHODE	
	Brut ²	Post- polymérisation à température ambiante ³	Post- polymérisation à 60 °C ⁴	Brut ²	Post- polymérisation à température ambiante ³	Post- polymérisation à 140 °F ⁴	
Propriétés en tracti	on						
Résistance à la rupture par traction	24 MPa	36 MPa	52 MPa	3481 psi	5221 psi	7542 psi	ASTM D638-14
Module de traction	0,8 GPa	1,7 GPa	2,3 GPa	122 ksi	247 ksi	334 ksi	ASTM D638-14
Allongement à la rupture	14 %	5 %	4 %	14 %	5 %	4 %	ASTM D638-14
Propriétés en flexio	n						
Module de flexion	0,6 GPa	1,8 GPa	2,3 GPa	87 ksi	261 ksi	334 ksi	ASTM D 790-17
Propriétés de résist	ance aux	chocs					
Résistance au choc Izod	26 J/m	29 J/m	26 J/m	0,5 ft-lbf/in	0,5 ft-lbf/in	0,5 ft-lbf/in	ASTM D256-10
Propriétés thermiqu	ies						
Température de fléchissement sous charge à 1,8 MPa	37 °C	44 °C	57 °C	99 °F	111 °F	135 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	43 °C	53 ℃	74 °C	109 °F	127 °F	165 °F	ASTM D 648-16

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

COMPATIBILITÉ AVEC LES SOLVANTS

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %
Acide acétique à 5 %	0,2	Huile minérale (légère)	1,0
Acétone	4,2	Huile minérale (lourde)	< 1,0
Eau de Javel (NaOCl ~5 %)	0,1	Eau salée (3,5 % NaCl)	0,3
Acétate de butyle	0,1	Skydrol 5	0,3
Carburant diesel	0,1	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,3
Éther monométhylique de diéthylène-glycol	0,8	Acide fort (HCl concentré)	< 1,0
Huile hydraulique	< 0,1	Éther monométhylique de tripropylène-glycol	0,3
Peroxyde d'hydrogène (à 3 %)	0,2	Eau	1,0
Isooctane (essence moteur)	< 1,0	Xylène	1,0
Alcool isopropylique	< 1,0		

à partir de pièces brutes imprimées sur la Form 3, avec les paramètres Draft Resin, à 200 µm d'épaisseur, après lavage en Form Wash pendant 5 minutes, séchage à l'air et sans post-polymérisation.

 $^{^{2}}$ Les données ont été obtenues 3 Les données ont été obtenues 4 Les données ont été obtenues à partir de pièces imprimées sur la Form 3, avec les paramètres Draft Resin, à 200 µm d'épaisseur, et après post-polymérisation à température ambiante en Form Cure pendant 5 minutes.

à partir de pièces imprimées sur la Form 3, avec les paramètres Draft Resin, à 200 µm d'épaisseur, et après post-polymérisation à 60° C dans la Form Cure pendant 5 minutes.

Technique

Matériaux pour l'ingénierie, la fabrication et la conception de produits

Notre gamme de résines techniques fiables et polyvalentes est destinée à vous aider à réduire les coûts, réaliser plus rapidement des itérations et mettre de meilleurs produits sur le marché.

^{*} Veuillez noter que les résines peuvent ne pas être disponibles dans toutes les régions.

High Temp Resin

Haute stabilité thermique

Grey Pro Resin

Matériau polyvalent pour le prototypage

High Temp Resin

Résine pour résistance thermique

High Temp Resin présente une température de fléchissement sous charge (HDT) de 238 °C à 0,45 MPa, la plus élevée de toutes les résines Formlabs. Elle sert à imprimer des prototypes précis et détaillés, présentant une thermorésistance élevée.

Flux de fluides, d'air chaud et de gaz

Supports, boîtiers et fixations résistants à la chaleur

Moules et inserts

FLHTAM02

* Peut ne pas être disponible partout.

Préparé le 07/ 10/ 2020 **Révision 01** 07/ 10/ 2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1			IMPÉRIAL 1			MÉTHODE
	Brut ²	Post- polymérisé ³	Post-polymérisé + polymérisation thermique supplémentaire 4	Brut ²	Post- polymérisé ³	Post-polymérisé + polymérisation thermique supplémentaire 4	
Propriétés en tractio	n						
Résistance à la rupture par traction	21 MPa	58 MPa	49 MPa	3031 psi	8456 psi	7063 psi	ASTM D638-14
Module de traction	0,75 GPa	2,8 GPa	2,8 GPa	109 ksi	399 ksi	406 ksi	ASTM D638-14
Allongement à la rupture	14 %	3,3 %	2,3 %	14 %	3,3 %	2,3%	ASTM D638-14
Propriétés en flexion	1						
Résistance à la flexion	24 MPa	95 MPa	97 MPa	3495 psi	13706 psi	14097 psi	ASTM D 790-15
Module de flexion	0,7 GPa	2,6 GPa	2,8 GPa	100 ksi	400 ksi	406 ksi	ASTM D 790-15
Propriétés de résista	nce aux cl	10CS					
Résistance au choc Izod	33 J/m	18 J/m	17 J/m	0,61 ft-lbf/in	0,34 ft-lbf/in	0,32 ft-lbf/in	ASTM D256-10
Propriétés thermique	es						
Température de fléchissement sous charge à 1,8 MPa	44 °C	78 °C	101 °C	111 °F	172 °F	214 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	49 °C	120 °C	238 °C	120 °F	248 °F	460 °F	ASTM D 648-16
Dilatation thermique	118 μm/m/°C	80 μm/m/°C	75 μm/m/°C	41 μin/in/°F	44 μin/in/°F	41 μin/in/°F	ASTM E 831-13

peuvent varier en fonction à partir de pièces brutes l'impression et de la température

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	24 h gain de taille (%)	24 h gain de poids (%)	Solvant	24 h gain de taille (%)	24 h gain de poids (%)
Acide acétique à 5 %	<1	< 1	Huile minérale (légère)	< 1	< 1
Acétone	<1	2	Huile minérale (lourde)	< 1	< 1
Eau de Javel (NaOCl ~5 %)	< 1	<1	Eau salée (3,5 % NaCl)	< 1	< 1
Acétate de butyle	< 1	< 1	Skydrol 5	< 1	1,1
Carburant diesel	<1	< 1	Solution d'hydroxyde de sodium (0,025 % pH 10)	< 1	< 1
Éther monométhylique de diéthylène-glycol	<1	1	Acide fort (HCl concentré)	1,2	< 1
Huile hydraulique	< 1	< 1	Éther monométhylique de tripropylène-glycol	< 1	< 1
Peroxyde d'hydrogène (à 3 %)	<1	< 1	Eau	< 1	< 1
Isooctane (essence moteur)	<1	< 1	Xylène	< 1	< 1
Alcool isopropylique	<1	< 1			

de la géométrie de la pièce, imprimées sur la Form 2, avec à 100 µm d'épaisseur, après lavage dans la Form Wash pendant 5 minutes, séchage à l'air et sans post-polymérisation.

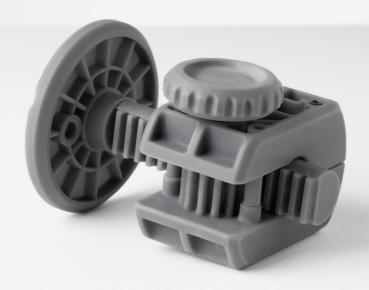
à partir de pièces brutes imprimées sur la Form 2, avec de son orientation pendant les paramètres High Temp Resin, les paramètres High Temp Resin, à 100 µm d'épaisseur, et postpolymérisées dans la Form Cure à 60 °C pendant 60 minutes.

¹Les propriétés du matériau ²Les données ont été obtenues ³Les données ont été obtenues ⁴Les données ont été obtenues à partir de pièces imprimées sur la Form 2, avec les paramètres High Temp Resin, à 100 µm d'épaisseur, et postpolymérisées dans la Form Cure à 80 °C pendant 120 minutes, suivies d'une polymérisation thermique supplémentaire dans un four de laboratoire, à 160 °C pendant 180 minutes.

RÉSINE TECHNIQUE formlahs 🔀

Grey Pro Resin

La Grey Pro Resin pour un prototypage polyvalent


La Grey Pro Resin présente une haute exactitude, un allongement modéré et peu de fluage. Ce matériau convient bien à la modélisation de concepts et au prototypage fonctionnel, particulièrement pour des pièces manipulées de façon répétitive.

Essais d'ajustement et de forme

Prototypes de produits de haute qualité

Masters de moules pour plastiques et silicones

Gabarits et fixations pour la fabrication

FLPRGR01

* Peut ne pas être disponible partout.

Préparé le 07/10/2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, Révision 01 07/10/2020 l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1		IMI	IMPÉRIAL 1	
	Brut ²	Post-polymérisé ³	Brut ²	Post-polymérisé ³	
Propriétés en traction					
Résistance à la rupture par traction	35 MPa	61 MPa	5076 psi	8876 psi	ASTM D638-14
Module de traction	1,4 GPa	2,6 GPa	203 ksi	377 ksi	ASTM D638-14
Allongement à la rupture	33 %	13 %	33 %	13 %	ASTM D638-14
Propriétés en flexion					
Effort de flexion à 5 % de contrainte	39 MPa	86 MPa	5598 psi	12400 psi	ASTM D 790-15
Module de flexion	0,94 GPa	2,2 GPa	136 ksi	319 ksi	ASTM D 790-15
Propriétés de résistance aux cho	ocs				
Résistance au choc Izod	non testé	19 J/m	non testé	0,35 ft-lbf/in	ASTM D256-10
Propriétés thermiques					
Température de fléchissement sous charge à 1,8 MPa	non testé	62 °C	non testé	144 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	non testé	78 °C	non testé	171 °F	ASTM D 648-16
Dilatation thermique (0-150 °C)	non testé	79 μm/m/°C	non testé	43 μin/in/°F	ASTM E 831-13

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %	
Acide acétique à 5 %	0,8	Huile minérale (légère)	0,4	
Acétone	11,0	Huile minérale (lourde)	0,3	
Eau de Javel (NaOCI ~5 %)	0,7	Eau salée (3,5 % NaCl)	0,6	
Acétate de butyle	0,8	Skydrol 5	0,5	
Carburant diesel	< 0,1	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,7	
Éther monométhylique de diéthylène-glycol	2,4	Acide fort (HCl concentré)	8,2	
Huile hydraulique	0,2	Éther monométhylique de tripropylène-glycol	1,5	
Peroxyde d'hydrogène (à 3 %)	0,8	Eau	0,8	
Isooctane (essence moteur)	< 0,1	Xylène	0,4	
Alcool isopropylique	1,6			

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de pièces brutes imprimées sur la Form 2, avec les paramètres de Grey Pro Resin, à une épaisseur de couche de 100 µm, d'impression, de so paramètres sans traitement supplémentaire.

Rigid Resin

Matériaux pour l'ingénierie, la fabrication et la conception de produits

Notre gamme de résines techniques fiables et polyvalentes est destinée à vous aider à réduire les coûts, réaliser plus rapidement des itérations et mettre de meilleurs produits sur le marché.

* Veuillez noter que les résines peuvent ne pas être disponibles dans toutes les régions.

Rigid 10K Resin Pièces rigides

et robustes de qualité industrielle

Rigid 4000 Resin

Pièces rigides et robustes pour l'ingénierie

Rigid 10K Resin

Rigid 10K Resin pour des prototypes rigides, robustes et de qualité industrielle

Cette résine à charge élevée en verre est le matériau le plus rigide de notre gamme de résines techniques. Choisissez Rigid 10K Resin pour des pièces industrielles précises devant subir une charge importante sans se déformer. Rigid 10K Resin présente une finition lisse et mate, ainsi qu'une haute résistance à la chaleur et aux produits chimiques.

Production en petite série de moules et d'inserts pour moulage par injection

Reproduit la rigidité des thermoplastiques à charge de verre et de fibres

Composants, gabarits et fixations résistants à la chaleur et exposés à des fluides

Modèles de test aérodynamique

FLRG1001

Peut ne pas être disponible partout.

07/10/2020 Préparé le

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, **Révision 02** 07/10/2020 l'exactitude des résultats obtenus en les utilisant

	MÉTRIQUE 1			IMPÉRIAL 1			MÉTHODE
	Brut	Post- polymérisation UV ¹	UV + thermiquel ²	Brut ²	Post- polymérisation UV ¹	UV + thermique ²	
Propriétés en traction							
Résistance à la rupture par traction	55 MPa	65 MPa	53 MPa	7980 psi	9460 psi	7710 psi	ASTM D638-14
Module de traction	7,5 GPa	10 GPa	10 GPa	1090 ksi	1480 ksi	1460 ksi	ASTM D638-14
Allongement à la rupture	2 %	1 %	1 %	2 %	1%	1 %	ASTM D638-14
Propriétés en flexion							
Résistance à la flexion	84 MPa	126 MPa	103 MPa	12200 psi	18200 psi	15000 psi	ASTM D 790-15
Module de flexion	6 GPa	9 GPa	10 GPa	905 ksi	1360 ksi	1500 ksi	ASTM D 790-15
Propriétés de résistance aux cho	ocs						
Résistance au choc Izod	16 J/m	16 J/m	18 J/m	0,3 ft-lbf/in	0,3 ft-lbf/in	0,3 ft-lbf/in	ASTM D256-10
Résistance au choc Izod sans entaille	41 J/m	47 J/m	41 J/m	0,8 ft-lbf/in	0,9 ft-lbf/in	0,7 ft-lbf/in	ASTM D4812-11
Propriétés thermiques							
Température de fléchissement sous charge à 1,8 MPa	56 °C	82 °C	110 °C	133 °F	180 °F	230 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	65 °C	163 °C	218 °C	149 °F	325 °F	424 °F	ASTM D 648-16
Dilatation thermique, 0-150 °C	48 μm/m/°C	47 μm/m/°C	46 μm/m/°C	27 μin/in/°F	26 μin/in/°F	26 μin/in/°F	ASTM E 831-13

Génération de gaz toxiques

Norme d'essai BSS 7239 (comparable à NFPA n° 258)	Concentration maximale autorisée selon BSS 7239 (ppm)	Mode flamboyant (ppm)	Mode sans flamme (ppm)	
Cyanure d'hydrogène	150	1	0,5	
Monoxyde de carbone	3500	50	10	
Oxydes nitreux	100	< 2	< 2	
Dioxyde de soufre	100	<1	<1	
Fluorure d'hydrogène	200	< 1,5	< 1,5	
Chlorure d'hydrogène	500	1	<1	

Densité de fumée	Densité optiq	Densité optique spécifique		té optique spécifique		Inflammabilité	
Norme de test	@ 90 sec	@ 4 min	Maximum	Norme de test	Évaluation		
ASTM E662 Mode flamboyant	2	95	132	UL 94 Section 7 (3 mm)	НВ		
ASTM E662 Mode sans flamme	0	1	63				

COMPATIBILITÉ AVEC LES SOLVANTS

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %	
Acide acétique à 5 %	< 0,1	Isooctane (essence moteur)	0	
Acétone	< 0,1	Huile minérale (légère)	0,2	
Alcool isopropylique	< 0,1	Huile minérale (lourde)	< 0,1	
Eau de Javel (NaOCl ~5 %)	0,1	Eau salée (3,5 % NaCl)	0,1	
Acétate de butyle	0,1	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,1	
Carburant diesel	0,1	Eau	< 0,1	
Éther monométhylique de diéthylène-glycol	0,4	Xylène	< 0,1	
Huile hydraulique	0,2	Acide fort (HCl concentré)	0,2	
Skydrol 5	0,6	Éther monométhylique de tripropylène-glycol	0,4	
Peroxyde d'hydrogène (à 3 %)	< 0,1			

Tous les échantillons d'essai ont été imprimés à l'aide de la Form 3 1 Les données ont été obtenues à partir de pièces imprimées en utilisant la Form 3, 100 µm et post-polymérisées avec une Form Cure pendant 60 minutes à 70 °C. ² Les données ont été obtenues à partir de pièces imprimées en utilisant la Form 3, 100 µm et post-polymérisées avec une Form Cure pendant 60 minutes à 70 °C et une polymérisation thermique supplémentaire à 90 °C pendant 125 minutes.

Rigid 4000 Resin

Rigid 4000 Resin pour des prototypes rigides et robustes destinés à l'ingénierie

Rigid 4000 Resin, un matériau à charge de verre, présente une finition lisse et polie et est idéale pour des pièces rigides et solides capables de résister à une déformation minimale. Choisissez Rigid 4000 Resin pour les applications générales soumises à une contrainte importante.

Reproduit la rigidité du PEEK

Pièces à parois fines

Gabarits et fixations

FLRGWH01

* Peut ne pas être disponible partout.

07/10/2020 Préparé le

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant

	MÉT	MÉTRIQUE 1		IMPÉRIAL 1	
	Brut ²	Post-polymérisé ³	Brut ²	Post-polymérisé ³	
TPropriétés en traction					
Résistance à la rupture par traction	33 MPa	69 MPa	4786 psi	10007 psi	ASTM D638-14
Module de traction	2,1 GPa	4,1 GPa	305 ksi	595 ksi	ASTM D638-14
Allongement à la rupture	23 %	5,3 %	23 %	5,3 %	ASTM D638-14
Propriétés en flexion					
Résistance à la flexion	43 MPa	105 MPa	6236 psi	15229 psi	ASTM D 790-15
Module de flexion	1,4 GPa	3,4 GPa	203 ksi	493 ksi	ASTM D 790-15
Propriétés de résistance aux cho	cs				
Résistance au choc Izod	16 J/m	23 J/m	0,3 ft-lbf/in	0,43 ft-lbf/in	ASTM D256-10
Propriétés thermiques					
Température de fléchissement sous charge à 1,8 MPa	41 °C	60 °C	105 °F	140 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	48 °C	77 °C	118 °F	170 °F	ASTM D 648-16
Dilatation thermique (0-150 °C)	64 μm/m/°C	63 μm/m/°C	36 μin/in/°F	35 μin/in/°F	ASTM E 831-13

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %	
Acide acétique à 5 %	0,8	Isooctane (essence moteur)	< 0,1	
Acétone	3,3	Huile minérale (légère)	0,2	
Alcool isopropylique	0,4	Huile minérale (lourde)	0,2	
Eau de Javel (NaOCI ~5 %)	0,7	Eau salée (3,5 % NaCl)	0,7	
Acétate de butyle	< 0,1	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,7	
Carburant diesel	< 0,1	Eau	0,7	
Éther monométhylique de diéthylène-glycol	1,4	Xylène	< 0,1	
Huile hydraulique 0,2		Acide fort (HCI concentré)	5,3	
Skydrol 5	1,1	Éther monométhylique de tripropylène-glycol	0,9	
Peroxyde d'hydrogène (à 3 %)	0,9			

 $^{^2}$ Les données ont été recueillies à partir de pièces brutes imprimées sur la Form 3, avec les paramètres de Rigid Resin, à une épaisseur de couche de 100 μm , sans traitement supplémentaire.

³ Les données ont été obtenues à partir de pièces imprimées sur la Form 3, avec les paramètres Rigid Resin à 100 µm, et après post-polymérisation dans la Form Cure à 80 °C pendant 15 minutes.

Tough Resin et Durable Resin

Matériaux pour l'ingénierie, la fabrication et la conception de produits

Notre gamme de résines techniques fiables et polyvalentes est destinée à vous aider à réduire les coûts, réaliser plus rapidement des itérations et mettre de meilleurs produits sur le marché.

* Veuillez noter que les résines peuvent ne pas être disponibles dans toutes les régions.

Tough 2000 Resin

Prototypage rigide, solide et robuste

Tough 1500 Resin

Prototypage rigide, flexible et résistant

Durable Resin

Matériau de prototypage souple et flexible

Tough 2000 Resin

Résine pour prototypes robustes

La résine Tough 2000 est le matériau le plus solide et le plus rigide de notre famille de résines fonctionnelles Tough et Durable. Choisissez Tough 2000 Resin pour fabriquer des prototypes de pièces solides et résistantes qui ne devront pas se plier facilement.

Solidité et rigidité proches de l'ABS

Gabarits et fixations robustes

Prototypes solides et résistants

(V1) FLTO2001

Révision 01 07/10/2020

* Peut ne pas être disponible partout.

Préparé le 0

07/10/2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

	MÉT	MÉTRIQUE 1		IMPÉRIAL 1	
	Brut ²	Post-polymérisé ³	Brut ²	Post-polymérisé ³	
Propriétés en traction					
Résistance à la rupture par traction	29 MPa	46 MPa	4206 psi	6671 psi	ASTM D638-14
Module de traction	1,2 GPa	2,2 GPa	174 ksi	329 ksi	ASTM D638-14
Allongement à la rupture	74 %	48 %	74 %	48 %	ASTM D638-14
Propriétés en flexion					
Résistance à la flexion	17 MPa	65 MPa	2465 psi	9427 psi	ASTM D 790-15
Module de flexion	0,45 GPa	1,9 GPa	65 ksi	275 ksi	ASTM D 790-15
Propriétés de résistance aux cho	cs				
Résistance au choc Izod	79 J/m	40 J/m	1,5 ft-lbf/in	0,75 ft-lbf/in	ASTM D256-10
Résistance au choc Izod sans entaille	208 J/m	715 J/m	3,9 ft-lbf/in	13 ft-lbf/in	ASTM D4812-11
Propriétés thermiques					
Température de fléchissement sous charge à 1,8 MPa	42 °C	53 °C	108 °F	127 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	48 °C	63 °C	118 °F	145 °F	ASTM D 648-16
Dilatation thermique (0-150 °C)	107 μm/m/°C	91 μm/m/°C	59 μin/in/°F	50 μin/in/°F	ASTM E 831-13

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %	
Acide acétique à 5 %	0,7	Isooctane (essence moteur)	< 0,1	
Acétone	18,8	Huile minérale (lourde)	0,1	
Alcool isopropylique	3,7	Huile minérale (légère)	0,2	
Eau de Javel (NaOCl ~5 %)	0,6	Eau salée (3,5 % NaCl)	0,6	
Acétate de butyle	6,2	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,6	
Carburant diesel	0,1	Eau	0,6	
Éther monométhylique de diéthylène-glycol	5,3	Xylène	4,1	
Huile hydraulique	< 0,1	Acide fort (HCl concentré)	3,0	
Skydrol 5	0,9	Éther monométhylique de tripropylène-glycol	1,0	
Peroxyde d'hydrogène (à 3 %)	0,6			

² Les données ont été recueillies à partir de pièces brutes imprimées sur la Form 2, avec les paramètres de Tough 2000 Resin, à une épaisseur de couche de 100 µm, sans traitement supplémentaire.

³ Les données ont été obtenues à partir de pièces imprimées sur la Form 2, avec les paramètres Tough 2000 Resin à 100 μm, et après post-polymérisation dans la Form Cure à 80 °C pendant 120 minutes

Tough 1500 Resin

Résine pour prototypage résistant

Tough 1500 Resin est le matériau le plus résistant de notre famille de résines fonctionnelles Tough et Durable. Cette résine produit des pièces rigides et flexibles qui se plient et retrouvent rapidement leur forme sous une charge cyclique.

Prototypes et ensembles avec du rebond

Attaches rapides par encliquetage ou emmanchement

Solidité et rigidité semblables à celles

du polypropylène

Certifié biocompatible pour un contact prolongé avec la peau

FLTO1501

* Peut ne pas être disponible partout.

Préparé le

07/10/2020

Révision 02 04/ 05/ 2021

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1		IMPÉRIAL 1		MÉTHODE
	Brut ²	Post-polymérisé ³	Brut ²	Post-polymérisé ³	
Propriétés en traction					
Résistance à la rupture par traction	26 MPa	33 MPa	3771 psi	4786 psi	ASTM D638-14
Module de traction	0,94 GPa	1,5 GPa	136 ksi	218 ksi	ASTM D638-14
Allongement à la rupture	69 %	51 %	69 %	51 %	ASTM D638-14
Propriétés en flexion					
Résistance à la flexion	15 MPa	39 MPa	2175 psi	5656 psi	ASTM D 790-15
Module de flexion	0,44 GPa	1,4 GPa	58 ksi	203 ksi	ASTM D 790-15
Propriétés de résistance aux chocs	5				
Résistance au choc Izod	72 J/m	67 J/m	1,3 ft-lbf/in	1,2 ft-lbf/in	ASTM D256-10
Résistance au choc Izod sans entaille	902 J/m	1387 J/m	17 ft-lbf/in	26 ft-lbf/in	ASTM D4812-11
Propriétés thermiques					
Température de fléchissement sous charge à 1,8 MPa	34 °C	45 °C	93 °F	113 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	42 °C	52 °C	108 °F	126 °F	ASTM D 648-16

97 μm/m/°C Tough 1500 Resin est considérée comme un dispositif entrant en contact avec la peau, conformément à la norme ISO 10993-1, et a satisfait aux exigences des critères de biocompatibilité suivants :

63 μin/in/°F

Norme ISO	Description 4,5
ISO 10993-5	Non cytotoxique
ISO 10993-10	Non irritante
ISO 10993-10	Non sensibilisante

varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

Dilatation thermique (0-150 °C)

114 μ m/m/°C

54 uin/in/°F

ASTM E 831-13

COMPATIBILITÉ AVEC LES SOLVANTS

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %
Acide acétique à 5 %	0,8	Huile minérale (légère)	< 0,1
Acétone	19,0	Huile minérale (lourde)	< 0,1
Eau de Javel (NaOCl ~5 %)	0,6	Eau salée (3,5 % NaCl)	0,7
Acétate de butyle	5,0	Skydrol 5	0,5
Carburant diesel	0,1	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,7
Éther monométhylique de diéthylène-glycol	5,3	Acide fort (HCl concentré)	4,4
Huile hydraulique	0,2	Éther monométhylique de tripropylène-glycol	0,6
Peroxyde d'hydrogène (à 3 %)	0,7	Eau	0,7
Isooctane (essence moteur)	< 0,1	Xylène	3,2
Alcool isopropylique	3,2		

¹ Les propriétés du matériau peuvent ² Les données ont été recueillies à partir de pièces brutes imprimées sur la Form 2, avec les paramètres de Tough 1500 Resin. à une épaisseur de couche de 100 µm, sans traitement supplémentaire.

⁴ Les échantillons d'essai pour la norme ISO 10993 ont été imprimés sur une Form 3 avec les paramètres Tough 1500 Resin à 100 μm, lavés dans une Form Wash pendant 20 minutes avec de l'alcool isopropylique ≥ 99 %, séchés pendant au moins 30 minutes et post-polymérisés à 70 °C pendant 60 minutes dans une Form Cure.

³ Les données ont été obtenues à partir de pièces imprimées sur la Form 2, avec les paramètres Tough 1500 Resin à 100 μm, et après postpolymérisation dans la Form Cure à 70 °C pendant 60 minutes.

⁵ Tough 1500 Resin was tested at NAMSA World Headquarters, OH, USA.

RÉSINE TECHNIQUE formlabs ₩

Durable Resin

Résine pour prototypage souple

Durable Resin est le matériau le plus flexible, le plus résistant aux chocs et le plus onctueux de notre famille de résines fonctionnelles Tough et Durable. Choisissez Durable Resin pour les pièces compressibles et les assemblages soumis à de faibles frottements.

Solidité et rigidité semblables à celles du polyéthylène

Surfaces à faible frottement et résistantes à l'usure

Gabarits résistants aux chocs

Prototypes compressibles

FLDUCL02

* Peut ne pas être disponible partout.

Préparé le 07

07/10/2020

Révision 01 07/10/2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

	MÉT	MÉTRIQUE 1		IMPÉRIAL 1	
	Brut ²	Post-polymérisé ³	Brut ²	Post-polymérisé ³	
Propriétés en traction					
Résistance à la rupture par traction	13 MPa	28 MPa	1900 psi	3980 psi	ASTM D638-14
Module de traction	0,24 GPa	1,0 GPa	34 ksi	149 ksi	ASTM D638-14
Allongement à la rupture	75 %	55 %	75 %	55 %	ASTM D638-14
Propriétés en flexion					
Résistance à la flexion	1,0 MPa	24 MPa	149 psi	3420 psi	ASTM D 790-15
Module de flexion	0,04 GPa	0,66 GPa	5,58 ksi	94,1 ksi	ASTM D 790-15
Propriétés de résistance aux cho	cs				
Résistance au choc Izod	127 J/m	114 J/m	2,37 ft-lbf/in	2,13 ft-lbf/in	ASTM D256-10
Résistance au choc Izod sans entaille	972 J/m	710 J/m	18,2 ft-lbf/in	13,3 ft-lbf/in	ASTM D4812-11
Propriétés thermiques					
Température de fléchissement sous charge à 0,45 MPa	< 30 °C	41 °C	< 86 °F	105 °F	ASTM D 648-16
Dilatation thermique (0-150 °C)	124 μm/m/°C	106 μm/m/°C	69,1 μin/in/°F	59 μin/in/°F	ASTM E 831-13

^{Les propriétés du matériau peuvent varier} en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %
Acide acétique à 5 %	1,3	Isooctane (essence moteur)	<1
Acétone	Échantillon fissuré	Huile minérale (légère)	<1
Alcool isopropylique	5,1	Huile minérale (lourde)	<1
Eau de Javel (NaOCl ~5 %)	<1	Eau salée (3,5 % NaCl)	<1
Acétate de butyle	7,9	Solution d'hydroxyde de sodium (0,025 % pH 10)	<1
Carburant diesel	<1	Eau	<1
Éther monométhylique de diéthylène-glycol	7,8	Xylène	6,5
Huile hydraulique	<1	Acide fort (HCl concentré)	Échantillon déformé
Skydrol 5	1,3	Éther monométhylique de tripropylène-glycol	1,2
Peroxyde d'hydrogène (à 3 %)	1		

² Les données ont été recueillies à partir de pièces brutes imprimées sur la Form 2, avec les paramètres de Durable Resin, à une épaisseur de couche de 100 μm, sans traitement supplémentaire.

³ Les données ont été obtenues à partir de pièces imprimées sur la Form 2, avec les paramètres Durable Resin à 100 µm, et après post-polymérisation dans la Form Cure, à 60 °C pendant 120 minutes.

Flexible Resin et Elastic Resin

Matériaux pour l'ingénierie, la fabrication et la conception de produits

Notre gamme de résines fiables et polyvalentes est conçue pour vous aider à réduire les coûts, à itérer plus rapidement et à mettre de meilleurs produits sur le marché.

* Veuillez noter que les résines peuvent ne pas être disponibles dans toutes les régions.

Flexible 80A Resin

Pièces flexibles et dures à lent retour élastique

Elastic 50A Resin

Pièces flexibles et souples à retour élastique rapide

Flexible 80A Resin

Résine pour prototypes flexibles rigides

Flexible 80A Resin est le matériau à surface douce au toucher le plus rigide de notre famille de résines Flexible et Elastic. Sa dureté Shore de 80A reproduit la flexibilité du caoutchouc ou du TPU.

Associant souplesse et résistance, Flexible 80A Resin peut supporter des contraintes cycliques de pliage, de flexion et de compression. Ce matériau convient au matelassage et aux dispositifs d'amortissement.

Poignées, manches et surmoulages

Sceaux, joints et masques

Modèles anatomiques de cartilages, tendons et ligaments

FLFL8001

*Peut ne pas être disponible partout.

Préparé le

07/10/2020

Révision 01 07/10/2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1		IMPÉRIAL 1		MÉTHODE
	Brut	Post-polymérisé ²	Brut	Post-polymérisé ²	
Propriétés mécaniques					
Résistance à la rupture par traction ³	3,7 MPa	8,9 MPa	539 psi	1290 psi	ASTM D 412-06 (A
Contrainte à 50 % d'allongement	1,5 MPa	3,1 MPa	218 psi	433 psi	ASTM D 412-06 (A
Contrainte à 100 % d'allongement	3,5 MPa	6,3 MPa	510 psi	909 psi	ASTM D 412-06 (A
Allongement à la rupture	100 %	120 %	100 %	120 %	ASTM D 412-06 (A
Dureté Shore	70A	80A	80A	80A	ASTM 2240
Déformation permanente par compression (23 °C pendant 22 heures)	Non testé	3 %	Non testé	3 %	ASTM D 395-03 (E
Déformation permanente par compression (70 °C pendant 22 heures)	Non testé	5 %	Non testé	5 %	ASTM D 395-03 (E
Résistance au déchirement ⁴	11 kN/m	24 kN/m	61 lbf/in	137 lbf/in	ASTM D 624-00
Résistance à la fatigue par flexion Ross à 23 °C	Non testé	> 200 000 cycles	Non testé	> 200 000 cycles	ASTM D1052, (entaillée), courbure de 60 ° 100 cycles/minute
Résistance à la fatigue par flexion Ross à -10 °C	Non testé	> 50 000 cycles	Non testé	> 50 000 cycles	ASTM D1052, (entaillée), courbure de 60°, 100 cycles/minute
Résilience Bayshore	Non testé	28 %	Non testé	28 %	ASTM D2632
Propriétés thermiques					
Température de transition vitreuse (Tv)	Non testé	27 °C	Non testé	27 °C	AMD

et de la température.

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %
Acide acétique à 5 %	0,9	Isooctane (essence moteur)	1,6
Acétone	37,4	Huile minérale (légère)	0,1
Alcool isopropylique	11,7	Huile minérale (lourde)	< 0,1
Eau de Javel (NaOCl ~5 %)	0,6	Eau salée (3,5 % NaCl)	0,5
Acétate de butyle	51,4	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,6
Carburant diesel	2,3	Eau	0,7
Éther monométhylique de diéthylène-glycol	19,3	Xylène	64,1
Huile hydraulique	1,0	Acide fort (HCl concentré)	28,6
Skydrol 5	10,7	Éther monométhylique de tripropylène-glycol	13,6
Peroxyde d'hydrogène (à 3 %)	0,7		

peuvent varier en fonction partir de pièces imprimées sur de la géométrie de la la Form 3 avec les paramètres pièce, de son orientation Flexible 80A Resin à 100 µm, pendant l'impression, des paramètres d'impression et après 10 minutes de lavage dans la Form Wash, puis postpolymérisation dans la Form Cure à 60 °C pendant 10 minutes.

^{**}Lessal de traction à ette l'edité après plus de 3 heures à 23 °C, sur une éprouvette de type C usinée dans des feuilles.

**Lessal de traction à ette l'edité après plus de 3 heures à 23 °C, sur une éprouvette de type C imprimée directement.

Elastic 50A Resin

Résine pour pièces flexibles et souples

Ce matériau, d'une dureté Shore 50A, est le plus souple de nos résines techniques. Il convient au prototypage de pièces habituellement fabriquées en silicone. Choisissez Elastic Resin pour réaliser des pièces qui devront se plier, s'étirer, être comprimées et résister à des contraintes cycliques sans se déchirer.

Prototypage d'objets de technologie portables et d'autres produits de consommation

Accessoires et maquettes pour effets spéciaux

Éléments convenant à la robotique

Modèles et dispositifs médicaux

FLELCL01

Peut ne pas être disponible partout.

07/10/2020 Préparé le

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, Révision 01 07/10/2020 l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1		IMPÉRIAL 1		METHODE		
	Brut	Post-polymérisé ²	Brut	Post-polymérisé ²			
Propriétés en traction							
Résistance à la rupture par traction ³	1,61 MPa	3,23 MPa	234 psi	468 psi	ASTM D 412-06 (A)		
Contrainte à 50 % d'allongement	0,92 MPa	0,94 MPa	133 psi	136 psi	ASTM D 412-06 (A)		
Contrainte à 100 % d'allongement	1,54 MPa	1,59 MPa	233 psi	231 psi	ASTM D 412-06 (A)		
Allongement à la rupture	100 %	160 %	100 %	160 %	ASTM D 412-06 (A)		
Résistance au déchirement ⁴	8,9 kN/m	19,1 kN/m	51 lbf/in	109 lbf/in	ASTM D 624-00		
Dureté Shore	40A	50A	40A	50A	ASTM 2240		
Déformation permanente par compression à 23 °C pendant 22 heures	2 %	2 %	2 %	2 %	ASTM D 395-03 (B)		
Déformation permanente par compression à 70 °C pendant 22 heures	3 %	9 %	3 %	9 %	ASTM D 395-03 (B)		

peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	24 h gain de taille (%)	Gain de poids après 24 heures, %	Solvant	24 h gain de taille (%)	Gain de poids après 24 heures, %
Acide acétique à 5 %	<1	2,8	Isooctane (essence moteur)	<1	3,5
Acétone	19,3	37,3	Huile minérale (légère)	<1	< 1
Alcool isopropylique	13,3	25,6	Huile minérale (lourde)	<1	< 1
Eau de Javel (NaOCl ~5 %)	<1	2	Eau salée (3,5 % NaCl)	<1	1,7
Acétate de butyle	18,2	39,6	Solution d'hydroxyde de sodium (0,025 % pH 10)	<1	2
Carburant diesel	1,2	4.2	Eau	< 1	2,3
Éther monométhylique de diéthylène-glycol	12	28,6	Xylène	20,4	46,6
Huile hydraulique	<1	2,1	Acide fort (HCl concentré)	14,2	39,4
Skydrol 5	9,9	21,7	Éther monométhylique de tripropylène-glycol	<1	23
Peroxyde d'hydrogène (à 3 %)	<1	2,2			

à partir de pièces imprimées sur la Form 2 avec les paramètres Flexible 80A Resin à 100 µm, et après 20 minutes de lavage dans la Form Wash, puis post-polymérisation dans la Form Cure à 60 °C pendant 20 minutes.

¹Les propriétés du matériau ²Les données ont été obtenues ³ L'essai de traction a été réalisé après plus de 3 heures à 23 °C, sur une éprouvette de type C en forme d'haltère et sous déformation à vitesse constante de 50,8 cm/minute (20 in/min).

⁴ L'essai de déchirement a été réalisé après plus de 3 heures à 23 °C, sur une éprouvette de type C et sous déformation à vitesse constante de 50,8 cm/minute (20 in/min).

Résines spéciales

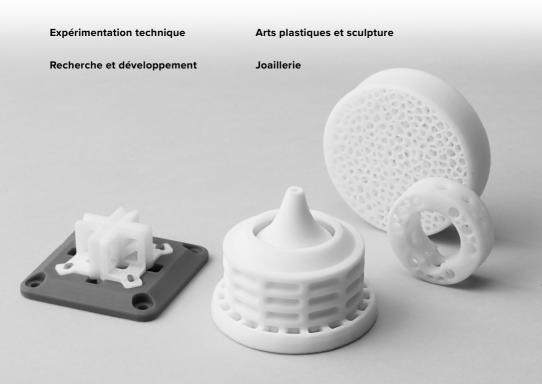
La famille de résines spéciales propose des matériaux avancés qui présentent des propriétés mécaniques exceptionnelles et augmentent les possibilités de fabrication en interne de nos imprimantes 3D stéréolithographiques. Ces matériaux peuvent nécessiter des étapes et des équipements supplémentaires, ainsi que des essais.

* Veuillez noter que les résines peuvent ne pas être disponibles dans toutes les régions.

Ceramic Resin

Matériau céramique expérimental

Rebound Resin


Matériau TPU à haute résistance pour utilisation finale

Ceramic Resin

Un matériau expérimental pour des applications d'ingénierie, d'art et de design

Les pièces imprimées avec Ceramic Resin, qui contient de la silice, peuvent être cuites pour obtenir des pièces entièrement en céramique. Cette résine expérimentale Form X requiert plus d'essais que les autres produits Formlabs. Veuillez lire le mode d'emploi avant impression.

Disponible uniquement pour la Form 2.

FLCEWH01

Peut ne pas être disponible partout.

Préparé le 05/03/2018

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, Révision 01 05/03/2018 l'exactitude des résultats obtenus en les utilisant.

PROPRIÉTÉS DU MATÉRIAU

Ceramic Resin

	MÉTRIQUE 1		IMPÉRIAL 1		MÉTHODE
	Brut ²	Cuit ³	Brut ²	Cuit ³	
Propriétés en traction					
Résistance à la rupture par traction	5,1 MPa	N/A	740 psi	N/A	ASTM D638-14
Module de traction	1 GPa	5,1 GPa	149 ksi	740 ksi	ASTM D638-14
Allongement	1,4 %	N/A	1,4 %	N/A	ASTM D638-14
Propriétés en flexion					
Effort de flexion à la rupture	10,3 MPa	10,3 MPa	1489 psi	1489 psi	ASTM D790-15e2
Module de flexion	995 MPa	N/A	144 ksi	N/A	ASTM D790-15e2
Propriétés de résistance aux cho	CS				
Résistance au choc Izod	18,4 J/m	N/A	0,35 ft-lb/in	N/A	ASTM D256-10e1
Propriétés thermiques					
Température de fléchissement sous charge à 1,8 MPa	75 °C	75 °C	155 °F	155 °F	ASTM D648-16, Méthode B
Température de fléchissement sous charge à 0,45 MPa	> 290 °C	> 290 °C	> 554 °F	> 554 °F	ASTM D648-16, Méthode B

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

² Les données ont été obtenues à partir de pièces brutes imprimées sur la Form 2, avec les paramètres Ceramic Resin à 100 μm, et après post-polymérisation dans la Form Cure à 60 °C pendant 60 minutes.

³ Les données ont été obtenues à partir de pièces imprimées sur la Form 2, avec les paramètres Ceramic Resin à 100 µm, et après cuisson, lavage, séchage et post-polymérisation dans la Form Cure à 60 °C pendant 60 minutes. Les pièces ont été imprimées avec un facteur d'échelle préalable et cuites dans un four selon un cycle de 30 heures, à une température de cuisson maximale de 1275 °C, comme indiqué dans le Guide d'utilisation de Formilabs.

Rebound Resin

Résine d'impression 3D élastique prête pour la production

Avec une résistance au déchirement cinq fois supérieure, une résistance à la rupture par traction trois fois supérieure et un allongement deux fois supérieur à ceux des autres matériaux élastomères pour la production disponibles sur le marché, Rebound Resin est parfaite pour imprimer en 3D des pièces souples et résistantes.

Production de pièces finales Joints, garnitures d'étanchéité et passe-fils

Éléments convenant à la robotique Applications personnalisées

Poignées, manches et surmoulages Géométries complexes

Ce matériau est disponible exclusivement par le biais d'un partenariat avec Formlabs et une quantité minimale est nécessaire pour vous lancer. Après nous avoir contactés, vous aurez la possibilité de demander un échantillon standard, d'acheter une série d'échantillons personnalisés pour les évaluer et, enfin, d'acheter un ensemble clé en main comprenant l'équipement nécessaire pour imprimer avec Rebound Resin dans vos locaux.

FLRBBL01

* Peut ne pas être disponible partout.

18/ 03/ 2020 Préparé le

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, Révision 01 18/03/2020 l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1	IMPÉRIAL 1	MÉTHODE
	Post-polymérisé	Post-polymérisé	
Propriétés en traction			
Résistance à la rupture par traction	22 MPa	3,391 psi	ASTM D 412-06 (A)
Module à 50 % d'allongement	3,46 MPa	501,83 psi	ASTM D 412-06 (A)
Allongement à la rupture	300 %	300 %	ASTM D 412-06 (A)
Déformation permanente par compression à 25 °C pendant 22 heures	16 %	16 %	ASTM D 395-03 (B)
Déformation permanente par compression à 70 °C pendant 22 heures	40 %	40 %	ASTM D 395-03 (B)
Résistance au déchirement	110 kN/m	0,628 lbf/in	ASTM D 624-00
Dureté, Shore A	86A	86A	ASTM D 2633
Résilience au rebond Bayshore	57 %	57 %	ASTM D 2633
Abrasion	101 mm ³	101 mm ³	ISO 4649, 40 tr/min, charge de 10 N
Résistance à la fatigue par flexion Ross (23 °C)	> 50 000 cycles (pas de propagation de fissures)	> 50 000 cycles (pas de propagation de fissures)	ASTM D1052, (entaillé), 23 °C, Pliage à 60 degrés, 100 cycles/minute
Résistance à la fatigue par flexion Ross (-10 °C)	> 50 000 cycles (pas de propagation de fissures)	> 50 000 cycles (pas de propagation de fissures)	ASTM D1052, (entaillé), -10 °C, Pliage à 60 degrés 100 cycles/minute
Propriétés diélectriques			
Constante diélectrique	7,7	7,7	ASTM D150, 1MHz
Facteur de dissipation	0,069	0,069	ASTM D150, 1MHz
Propriétés thermiques			
Température de transition vitreuse	-50 °C	-58 °F	DSC

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %
Eau	9	Dichlorométhane	367
Eau salée	7	Diacétate de propylène-glycol	9
Alcool isopropylique	8	Éther monométhylique de diéthylène-glycol	16
Acétone	37	Huile minérale (légère)	< 1,0
Hexane	1	Huile de ricin	< 1,0
Acétate de butyle	26	Huile hydraulique	< 1,0

Secteur dentaire

Matériaux de haute précision pour cabinets et laboratoires dentaires

Notre gamme de résines dentaires permet aux laboratoires et cabinets dentaires de fabriquer rapidement en interne toutes sortes de dispositifs dentaires, des guides chirurgicaux et gouttières biocompatibles aux prothèses fixes et aux plagues occlusales transparentes.

^{*} Veuillez noter que les résines peuvent ne pas être disponibles dans toutes les régions.

Model Resin

Modèles de couleur pierre

Draft Resin

Modèles à impression rapide

Castable Wax Resin

Restaurations moulées ou pressées

Dental

LT Clear

Soft Tissue Resin

Fausses gencives

Surgical Guide Resin

Guides d'implant

Dental LT Clear V2 Resin

Gouttières occlusales

Dental LT Clear V1 Resin

Gouttières occlusales (ancienne formulation)

IBT Resin

Plateaux de collage indirect

Custom Trav Resin

Porte-empreintes personnalisés

Temporary CB Resin

Couronnes, bridges, inlays, onlays et facettes provisoires TEINTES VITA1 CLASSICAL: A2, A3, B1, C2

Permanent Crown Resin

Couronnes, inlays, onlays et facettes permanents

TEINTES VITA1 CLASSICAL: A2, A3, B1, C2

Denture Base & Teeth Resin

Prothèses dentaires à long terme, temporaires ou d'essayage

Model Resin

Un matériau de modèle très précis qui fournit la base parfaite pour le développement d'appareils

Model Resin est un matériau de précision et d'exactitude élevées, conçue pour l'impression de modèles de couronnes et de bridges avec dies amovibles. Cette résine permet d'imprimer des lignes marginales et des contacts nets, avec une précision de \pm 50 microns, et des dies amovibles à ajustement serré reproductible. Les impressions présentent une surface lisse et mate, et leur couleur est semblable à celle du gypse, ce qui facilite le passage de l'analogique au numérique.

Modèles très précis

Éléments de restauration

Modèles de couleur pierre

FLDMBE02

* Peut ne pas être disponible partout.

Préparé le 02/10/2017

Révision 01 02/10/2017

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1		IMPÉRIAL 1		MÉTHODE	
	Brut ²	Post-polymérisé ³	Brut ²	Post-polymérisé ³		
Propriétés en traction						
Résistance à la rupture par traction	33 MPa	61 MPa	4800 psi	8820 psi	ASTM D638-14	
Module de traction	1,6 GPa	2,7 GPa	230 ksi	397 ksi	ASTM D638-14	
Allongement à la rupture	25 %	5 %	25 %	5 %	ASTM D638-14	
Propriétés en flexion						
Module de flexion	0,95 GPa	2,5 GPa	138 psi	365 psi	ASTM D 790-15	
Propriétés de résistance aux cho	cs					
Résistance au choc Izod	27 J/m	33 J/m	0,5 ft-lbf/in	0,6 ft-lbf/in	ASTM D256-10	
Propriétés thermiques						
Température de fléchissement sous charge à 1,8 MPa	33 °C	46 °C	91 °F	115 °F	ASTM D 648-16	
Température de fléchissement sous charge à 0,45 MPa	40 °C	49 °C	105 °F	119 °F	ASTM D 648-16	

Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

COMPATIBILITÉ AVEC LES SOLVANTS

G = bonne résistance

Les pièces exposées à ce solvant ne devraient pas être sujettes à une diminution des propriétés mécaniques.

(> 2 % de gain de poids, > 2 % d'augmentation de largeur sur 24 heures pour un cube de 1 x 1 x 1 cm)

X = résistance insuffisante

Les pièces exposées à ce solvant seront sujettes à une importante diminution des propriétés mécaniques ainsi qu'à une dégradation visible.

(> 2% de gain de poids, > 2% d'augmentation de largeur sur 24 heures pour un cube de $1\times1\times1$ cm)

Solvant	Brute	Post- polymérisé	Solvant	Brute	Post- polymérisé
Acide acétique à 5 %	G	G	Peroxyde d'hydrogène (à 3 %)	G	G
Acétone	Х	Х	Isooctane (essence moteur)	G	G
Eau de Javel (NaOCI ~5 %)	G	G	Alcool isopropylique	X	G
Acétate de butyle	x	G	Solution d'hydroxyde de sodium (0,025 % pH 10)	G	G
Éther monométhylique de diéthylène-glycol	x	G	Eau	G	G
Eau salée (3,5 % NaCl)	G	G	Xylène	X	G

² Les données ont été recueillies à partir de pièces brutes imprimées sur la Form 2, avec les paramètres de Model Resin, à une épaisseur de couche de 100 µm, sans traitement supplémentaire.

³ Les données ont été obtenues à partir de pièces imprimées sur la Form 2, avec les paramètres de Model Resin à 100 µm, et après post-polymérisation sous LED à 405 nm et 1,25 mW/cm², pendant 60 minutes.

Draft Resin

Un matériau de pointe conçu pour l'impression rapide de modèles orthodontiques précis

Capable d'imprimer un modèle dentaire en moins de 20 minutes, Draft Resin est notre matériau d'impression le plus rapide. Cette résine de haute précision présente une finition de surface lisse, ce qui fait de Draft Resin le matériau idéal pour la production de plaques occlusales et d'appareils de maintien. Utilisez le paramètre « 200 microns » pour la vitesse d'impression la plus rapide et des dispositifs livrables le jour même, ou le paramètre « 100 microns » pour des modèles plus détaillés.

Production rapide de modèles

Modèles orthodontiques

FLDRGR02

* Peut ne pas être disponible partout.

Préparé le

07/10/2020

Révision 01 07/10/2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1			IMPÉRIAL 1		MÉTHODE	
	Brut ²	Post- polymérisation à température ambiante ³	Post- polymérisation à 60 °C ⁴	Brut ²	Post- polymérisation à température ambiante ³	Post- polymérisation à 140 °F ⁴	
Propriétés en traction	1						
Résistance à la rupture par traction	24 MPa	36 MPa	52 MPa	3481 psi	5221 psi	7542 psi	ASTM D638-14
Module de traction	0,8 GPa	1,7 GPa	2,3 GPa	122 ksi	247 ksi	334 ksi	ASTM D638-14
Allongement à la rupture	14 %	5 %	4 %	14 %	5 %	4 %	ASTM D638-14
Propriétés en flexion							
Module de flexion	0,6 GPa	1,8 GPa	2,3 GPa	87 ksi	261 ksi	334 ksi	ASTM D 790-17
Propriétés de résista	nce aux c	hocs					
Résistance au choc Izod	26 J/m	29 J/m	26 J/m	0,5 ft-lbf/in	0,5 ft-lbf/in	0,5 ft-lbf/in	ASTM D256-10
Propriétés thermique	es .						
Température de fléchissement sous charge à 1,8 MPa	37 °C	44 °C	57 °C	99 °F	111 °F	135 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	43 °C	53 ℃	74 °C	109 °F	127 °F	165 °F	ASTM D 648-16

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

COMPATIBILITÉ AVEC LES SOLVANTS

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %
Acide acétique à 5 %	0,2	Huile minérale (légère)	< 1,0
Acétone	4,2	Huile minérale (lourde)	< 1,0
Eau de Javel (NaOCl ~5 %)	0,1	Eau salée (3,5 % NaCl)	0,3
Acétate de butyle	0,1	Skydrol 5	0,3
Carburant diesel	0,1	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,3
Éther monométhylique de diéthylène-glycol	0,8	Acide fort (HCI concentré)	< 1,0
Huile hydraulique	< 0,1	Éther monométhylique de tripropylène-glycol	0,3
Peroxyde d'hydrogène (à 3 %)	0,2	Eau	< 1,0
Isooctane (essence moteur)	< 1,0	Xylène	< 1,0
Alcool isopropylique	< 1,0		

à partir de pièces brutes imprimées sur la Form 3, avec les paramètres Draft Resin, à 200 µm d'épaisseur, après à 200 µm d'épaisseur, et lavage en Form Wash pendant 5 minutes, séchage à l'air et sans post-polymérisation.

 $^{^2}$ Les données ont été obtenues 3 Les données ont été obtenues 4 Les données ont été obtenues à partir de pièces imprimées sur la Form 3, avec les à 200 μm d'épaisseur, et après post-polymérisation à température ambiante en Form Cure pendant 5 minutes. 5 minutes.

à partir de pièces imprimées sur la Form 3, avec les paramètres Draft Resin, à 200 µm d'épaisseur, et après post-polymérisation à 60° C dans la Form Cure pendant

Castable Wax Resin

Un matériau très précis pour le moulage et le pressage de couronnes, bridges et prothèses amovibles partielles

Testée en détail par les prothésistes, Castable Wax Resin de Formlabs procure une grande précision des lignes marginales et de l'occlusion. Elle contient 20 % de cire, ce qui lui confère sa fiabilité et une grande propreté au brûlage. Les modèles imprimés sont assez solides pour ne pas nécessiter de post-polymérisation, rendant le processus plus rapide et plus simple.

Moules pour les procédés de moulage et de pressage

Couronnes

Structures de prothèses dentaires partielles amovibles

Bridges

FLCWPU01

* Peut ne pas être disponible partout.

Préparé le

05/ 07/ 2018

Révision 01 05/07/2018

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

Castable Wax Resin

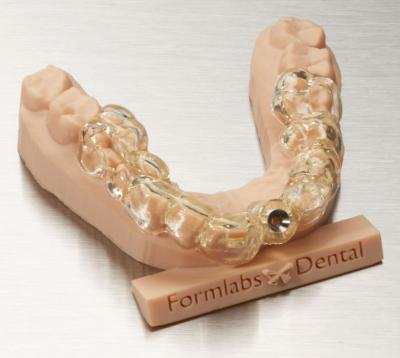
	MÉTRIQUE 1	IMPÉRIAL 1	MÉTHODE	
	Brut ²	Brut ²		
Propriétés en traction				
Résistance à la rupture par traction	12 MPa	1680 psi	ASTM D 638-10	
Module de traction	220 MPa	32 ksi	ASTM D 638-10	
Allongement à la rupture	13 %	13 %	ASTM D 638-10	
Propriétés du brûlage				
Résistance à la flexion	249 ℃	480 °C	ASTM E 1131	
Module de flexion	0,0-0,1 %	0,0-0,1 %	ASTM E 1131	

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

 $^{^2}$ Les données ont été obtenues à partir de pièces imprimées sur la Form 2, avec les paramètres Castable Resin Détails fins à 50 $\mu m,$ après lavage et sans post-polymérisation.

Surgical Guide Resin

Un matériau de qualité supérieure pour l'impression de guides d'implants chirurgicaux


Surgical Guide Resin est conçue pour imprimer à des résolutions de 100 microns ou 50 microns d'épaisseur de couche sur les imprimantes SLA Formlabs, afin de produire des gabarits et des guides pour implants de dimensions précises.

Guides chirurgicaux

Modèles de dimensionnement de dispositifs

Pilotes de perçage

Gabarits de perçage

FLSGAM01

* Peut ne pas être disponible partout.

Préparé le 11/04/2019

Révision 02 21/ 07/ 2021

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

Surgical Guide Resin

	Post-polymérisé 1, 2	Méthode
Allongement	12 %	ASTM D638
Résistance à la flexion	> 102 MPa	ASTM D790
Module de flexion	> 2400 MPa	ASTM D790

Compatibilité avec les n	néthodes de stérilisation
Faisceau d'électrons	Irradiation par faisceau d'électrons 35 kGy
Oxyde d'éthylène	Oxyde d'éthylène à 100 % à 55 °C pendant 180 minutes
Rayons gamma	Irradiation gamma 29,4-31,2 kGy
Stérilisation à la vapeur	Autoclave à 134 °C pendant 20 minutes Autoclave à 121 °C pendant 30 minutes

Pour davantage de détails sur la compatibilité des méthodes de stérilisation, consultez Formlabs.com.

Compatibilité avec les désinfectants		
Désinfection chimique	Alcool isopropylique à 70 % pendant 5 minutes	

Surgical Guide Resin est un dispositif médical de Classe I en vertu de l'article I de la Directive relative aux dispositifs médicaux (93/42/EEC) dans l'UE, et de la Section 201(h) du Federal Food Drug & Cosmetic (FD&C) Act.

Surgical Guide Resin a été évaluée conformément à la norme ISO 10993-1:2018, Évaluation biologique des dispositifs médicaux - Partie 1: Évaluation et essais au sein d'un processus de gestion du risque, et à la norme ISO 7405:2009/ (R)2015, Médecine bucco-dentaire - Évaluation de la biocompatibilité des dispositifs médicaux utilisés en médecine bucco-dentaire, et répondent aux exigences pour les risques suivants en matière de biocompatibilité :

Norme ISO	Description ³
EN ISO 10993-5	Non cytotoxique
EN ISO 10993-10	Non irritant
EN ISO 10993-10	Non sensibilisant

La résine a été développée en conformité avec les normes ISO suivantes :

Norme ISO	Description
EN ISO 13485	Dispositifs médicaux – Systèmes de management de la qualité – Exigences à des fins réglementaires
EN ISO 14971	Dispositifs médicaux - Application de la gestion des risques aux dispositifs médicaux

¹ Les propriétés de la résine peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression, de la température et des méthodes de désinfection ou de stérilisation utilisées.

² Les données pour les échantillons post-polymérisés ont été mesurées sur des barres de traction de type IV, imprimées sur la Form 2 avec les paramètres Surgical Guide Resin à 100 µm, après lavage dans une Form Wash pendant 20 minutes dans de l'alcool isopropylique à 99 %, et post-polymérisées à 60 °C pendant 30 minutes dans la Form Cure.

³ Surgical Guide Resin a été testée au siège mondial de NAMSA, Ohio, aux États-Unis.

IBT Resin

Un matériau flexible qui permet un placement efficace et précis du bracket orthodontique

Utilisez IBT Resin, matériau de classe I, pour imprimer en 3D des plateaux de collage indirect et créer un processus de placement des brackets dentaires rapide et rentable pour une orthodontie de haute qualité. IBT Resin permet d'imprimer des gouttières de transfert de brackets pour arcade complète ou quadrant rapidement avec une épaisseur de couche de 100 microns, ce qui réduit la main-d'œuvre et augmente le volume de production.

	Post-polymérisé 1,2	Méthode
Résistance à la rupture par traction	≥ 5 MPa	ASTM D638
Module de Young	> 16 MPa	ASTM D638
Allongement	> 25 %	ASTM D638
Dureté Shore A	< 90A	ASTM D2240

Compatibilité avec les désinfectants		
Désinfection chimique	Alcool isopropylique à 70 % pendant 5 minutes	

La résine IBT est un dispositif médical de classe I tel que défini à l'article 2 du règlement sur les dispositifs médicaux 2017/74 (MDR) dans l'UE et à la section 201(h) du Federal Food Drug & Cosmetic (FD&C) Act..

IBT Resin a été évaluée conformément à la norme ISO 10993-1:2018, Évaluation biologique des dispositifs médicaux - Partie 1: Évaluation et essais au sein d'un processus de gestion du risque, et à la norme ISO 7405:2009/(R)2015, Médecine bucco-dentaire - Évaluation de la biocompatibilité des dispositifs médicaux utilisés en médecine buccodentaire, et répondent aux exigences pour les risques suivants en matière de biocompatibilité :

Norme ISO	Description ³
EN ISO 10993-5	Non cytotoxique
EN ISO 10993-10	Non irritant
EN ISO 10993-10	Non sensibilisant

La résine a été développée en conformité avec les normes ISO suivantes :

Norme ISO	Description	
EN ISO 13485	Dispositifs médicaux – Systèmes de management de la qualité – Exigences à des fins réglementaires	
EN ISO 14971	Dispositifs médicaux - Application de la gestion des risques aux dispositifs médicaux	

¹ Les propriétés de la résine peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression, de la température et des méthodes de désinfection ou de stérilisation utilisées.

² Les données pour les échantillons post-polymérisés ont été mesurées sur des barres de traction de type IV, imprimées sur la Form 3B avec les paramètres IBT Resin à 100 µm, après lavage dans une Form Wash pendant 20 minutes dans de l'alcool isopropylique à ≥ 96 %, et post-polymérisées à 60 °C pendant 60 minutes dans la Form Cure.

³ IBT Resin a été testée au siège mondial de NAMSA, Ohio, aux États-Unis.

Dental LT Clear Resin $\vee 2$

Un matériau durable à couleur corrigée pour l'impression de gouttières occlusales dures

Imprimez directement des gouttières occlusales de haute qualité, en interne et de manière abordable, grâce à Dental LT Clear Resin (V2). Hautement durable et résistant à la rupture, ce matériau de teinte neutre et translucide peut être poli pour obtenir un haut niveau de transparence optique et résiste à la décoloration pour vous permettre de réaliser des produits finis esthétiques dont vous serez fier.

Plaques occlusales

Gouttières

FLDLCL02

* Peut ne pas être disponible partout.

Préparé le

16/ 09/ 2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

Dental LT Clear Resin V2

	MÉTRIQUE 1	MÉTHODE
	Post-polymérisé ²	
Propriétés en traction		
Résistance à la rupture par traction	52 MPa	ASTM D638-10 (Type IV)
Module de Young	2080 MPa	ASTM D638-10 (Type IV)
Allongement	12 %	ASTM D638-10 (Type IV)
Propriétés en flexion		
Résistance à la flexion	84 MPa	ASTM D790-15 (Méthode B)
Module de flexion	2300 MPa	ASTM D790-15 (Méthode B)
Propriétés de dureté		
Dureté Shore D	78D	ASTM D2240-15 (Type D)
Propriétés de résistance aux chocs		
Force d'impact IZOD	449 J/m	ASTM D4812-11 (sans entaille)
Autres propriétés		
Absorption d'eau	0,54 %	ASTM D570-98 (2018)

Dental LT CLear Resin (V2) a été évaluée conformément à la norme ISO 10993-1:2018, Évaluation biologique des dispositifs médicaux - Partie 1 : Évaluation et essais au sein d'un processus de gestion du risque, et ISO 7405:2018, Médecine buccodentaire - Évaluation de la biocompatibilité des dispositifs médicaux utilisés en médecine bucco-dentaire, et répond aux exigences pour les risques suivants en matière de biocompatibilité :

Norme ISO	Description ³
ISO 10993-5:2009	Non cytotoxique
ISO 10993-10:2010/(R)2014	Non irritant
ISO 10993-10:2010/(R)2014	Non sensibilisant
ISO 10993-3:2014	Non mutagène
ISO 10993-17:2002, ISO 10993-18:2005	Non toxique (subaigu/subchronique)

La résine a été développée en conformité avec les normes ISO suivantes :

Norme ISO	Description
EN ISO 13485:2016	Dispositifs médicaux – Systèmes de management de la qualité – Exigences à des fins réglementaires
EN ISO 14971:2012	Dispositifs médicaux - Application de la gestion des risques aux dispositifs médicaux

varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression, de la température et des méthodes de désinfection ou de stérilisation utilisées.

¹ Les propriétés de la résine peuvent ² Les données ont été relevées sur des éprouvettes imprimées sur la Form 3B avec les paramètres Dental LT Clear Resin (V2) à 100 µm, puis lavées dans une Form Wash pendant 20 minutes dans de l'alcool isopropylique à 99 %, et post-polymérisées à 60 °C pendant 60 minutes dans la Form Cure.

³ Dental LT Clear Resin (V2) a été testée au Siège mondial de NAMSA, Ohio, aux États-Unis.

Dental LT Clear Resin V1

Un matériau résistant à l'usure pour l'impression de gouttières occlusales dures

Dental LT Clear Resin (V1) de Formlabs est spécialement conçue pour être imprimée avec les imprimantes SLA Formlabs afin de produire des dispositifs solides, précis et biocompatibles pour un contact à long terme avec les muqueuses.

Plaques occlusales

Gouttières

FLDLCL01

* Peut ne pas être disponible partout.

Préparé le

09/06/2020 Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, Révision 01 09/06/2020 l'exactitude des résultats obtenus en les utilisant.

Dental LT Clear Resin V1

	MÉTRIQUE 1	MÉTHODE
	Post-polymérisé	
Propriétés mécaniques		
Facteur d'intensité de contraintes maximum	≥ 1,1 MPa•m ^{1/2}	ISO 179:2010
Énergie de fracture totale	≥ 250 J/m ²	ISO 20795-2:2013
Propriétés en flexion		
Résistance à la flexion	≥ 50 MPa	ISO 20795-2:2013
Module de flexion	≥ 1300 MPa	ISO 20795-2:2013
Propriétés de dureté		
Dureté Shore D	80-90D	ISO 868:2003

Les essais de Dental LT Clear Resin V1 ont été menés par NAMSA, à Chasse-sur-Rhône en France. Elle est certifiée biocompatible conformément à la norme EN-ISO 10993-1:2009/AC:2010.

Norme ISO	Description
EN-ISO 10993-3:2014	Non mutagène
EN ISO 10993-5:2009	Non cytotoxique
EN-ISO 10993-10:2010	Non irritant
EN-ISO 10993-10:2010	Non sensibilisant
EN-ISO 10993-11:2006	Non toxique

¹ Les propriétés de la résine peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression, de la température et des méthodes de désinfection ou de stérilisation utilisées.

Custom Tray Resin

Un matériau prêt pour la production qui permet des empreintes définitives très précises

Custom Tray Resin vous permet d'imprimer directement des porte-empreintes pour de nombreuses pièces de dentisterie, notamment des implants, des prothèses dentaires, des couronnes et des bridges. La fabrication numérique de porte-empreintes fournit des pièces de précision constantes pour des interventions dentaires de grande qualité. Custom Tray Resin permet d'imprimer des porte-empreintes entiers rapidement avec une épaisseur de couche de 200 microns, ce qui réduit la main-d'œuvre et augmente le volume de production.

FLCTBL01

* Peut ne pas être disponible partout.

Préparé le 07/10/2020

Révision 02 21/10/2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

Custom Tray Resin

	Post-polymérisé 1,2	Méthode
Résistance à la rupture par traction	> 70 MPa	ASTM D638
Module de Young	> 2500 MPa	ASTM D638
Allongement	> 3 %	ASTM D638
Résistance à la flexion	≥ 100 MPa	ASTM D790
Module de flexion	≥ 2600 MPa	ASTM D790
Dureté Shore A	> 80 D	ASTM D2240

Compatibilité avec les désinfectants	
Désinfection chimique	Alcool isopropylique à 70 % pendant 5 minutes

Custom Tray Resin est un dispositif médical de Classe I en vertu de l'article I de la Directive relative aux dispositifs médicaux (93/42/EEC) dans l'UE, et de la Section 201(h) du Federal Food Drug & Cosmetic (FD&C) Act.

Custom Tray Resin a été évaluée conformément à la norme ISO 10993-1:2018, Évaluation biologique des dispositifs médicaux - Partie 1: Évaluation et essais au sein d'un processus de gestion du risque, et à la norme ISO 7405:2009/(R)2015, Médecine bucco-dentaire - Évaluation de la biocompatibilité des dispositifs médicaux utilisés en médecine bucco-dentaire, et répondent aux exigences pour les risques suivants en matière de biocompatibilité:

Norme ISO	Description ³
EN ISO 10993-5	Non cytotoxique
EN ISO 10993-10	Non irritant
EN ISO 10993-10	Non sensibilisant

La résine a été développée en conformité avec les normes ISO suivantes :

Norme ISO Description	
EN ISO 13485	Dispositifs médicaux – Systèmes de management de la qualité – Exigences à des fins réglementaires
EN ISO 14971	Dispositifs médicaux - Application de la gestion des risques aux dispositifs médicaux

¹ Les propriétés de la résine peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression, de la température et des méthodes de désinfection ou de stérilisation utilisées.

² Les données pour les échantillons post-polymérisés ont été mesurées sur des barres de traction de type IV, imprimées sur la Form 2 avec les paramètres Custom Tray Resin à 200 µm, puis lavées dans une Form Wash pendant 10 minutes dans de l'alicool isopropylique à 99 %, et post-polymérisées à 60 °C pendant 30 minutes dans la Form Cure.

³ Custom Tray Resin a été testée au siège mondial de NAMSA, Ohio, aux États-Unis.

Temporary CB

Un matériau validé pour des restaurations provisoires confortables et esthétiques

Temporary CB Resin est un matériau de classe lla conçu pour l'impression 3D de prothèses dentaires biocompatibles sur les imprimantes Form 2 et Form 3B. Cette résine colorée peut s'imprimer à une épaisseur de couche de 50 microns pour produire des restaurations temporaires parfaitement ajustées, dotées d'une surface lisse, d'un haut niveau de détails et d'une excellente stabilité dimensionnelle. Les restaurations réalisées en Temporary CB Resin peuvent rester dans la bouche jusqu'à 12 mois.

Temporary CB Resin n'est approuvée que pour un usage en conjonction avec une Stainless Steel Build Platform.

Restaurations temporaires:

Bridges (jusqu'à sept dents) Couronnes

Facettes Onlays

Inlays

FLTCA201 FLTCA301

FLTCB101 FLTCC201

* Peut ne pas être disponible partout.

Préparé le

09/06/2020 Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, **Révision 01** 09/ 06/ 2020 l'exactitude des résultats obtenus en les utilisant.

Temporary CB Resin

Teintes VITA1 Classical: A2, A3, B1 et C2

VALEURS MESURÉES

MÉTHODE

Propriétés mécaniques		
Densité	1,4-1,5 g/cm ³	Norme BEGO
Viscosité	2500-6000 MPa*s	Norme BEGO
Résistance à la flexion (après post-polymérisation) ^{2, 3, 4}	≥ 100 MPa	EN ISO 10477, EN ISO 4049

Temporary CB Resin est un dispositif médical en vertu de la Directive relative aux dispositifs médicaux (93/42/EEC) dans l'UE, et de la Section 201(h) du Federal Food Drug & Cosmetic (FD&C) Act.

Les restaurations imprimées avec Temporary CB Resin ont été évaluées conformément à la norme ISO 10993-1:2018, Évaluation biologique des dispositifs médicaux - Partie 1 : Évaluation et essais au sein d'un processus de gestion du risque, et à la norme ISO 7405:2009/(R)2015, Médecine bucco-dentaire - Évaluation de la biocompatibilité des dispositifs médicaux utilisés en médecine bucco-dentaire, et répondent aux exigences pour les risques suivants en matière de biocompatibilité :

Norme ISO	Description ⁵	
EN ISO 10993-5:2009	Non cytotoxique	
ISO 10993-10:2010/(R)2014	Non irritant	
ISO 10993-10:2010/(R)2014	Non sensibilisant	
ISO 10993-3:2014	Non génotoxique	
ISO 10993-1:2009	Non toxic	

La résine a été développée en conformité avec les normes ISO suivantes :

Norme ISO	Description
EN ISO 13485:2016	Dispositifs médicaux – Systèmes de management de la qualité – Exigences à des fins réglementaires
EN ISO 14971:2019	Dispositifs médicaux - Application de la gestion des risques aux dispositifs médicaux

¹ VITA est la marque déposée d'une société non liée à Formlabs Inc.

² Les propriétés de la résine peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression, et des conditions environnementales.

³ Les éprouvettes ont été imprimées sur une imprimante Form 2 et Form 3B équipées d'une Stainless Steel Build Platform à une résolution de 50 µm et avec les réglages pour Temporary CB Resin. Les éprouvettes imprimées ont subi le post-traitement recommandé dans le mode d'emploi.

⁴ Les données des échantillons post-polymérisés ont été relevées sur un banc de flexion trois points conformément aux normes EN ISO 10477 et EN ISO 4049. Soutien du lecteur d'écran activé

⁵ Temporary CB Resin a été testée chez Eurofins Biopharma Product Testing, Munich GmbH.

Permanent Crown

Un matériau validé pour des restaurations permanentes confortables et esthétiques

Permanent Crown Resin est une résine dentaire colorée à charge de céramique pour l'impression 3D de couronnes unitaires, bridges, inlays, onlays et facettes permanents. Permanent Crown Resin produit des restaurations à long terme de grande résistance et permettant un ajustement précis. De par leur faible absorption d'eau et leur finition lisse, les restaurations offrent une bonne résistance au vieillissement, à la décoloration et à l'accumulation de plaque.

Permanent Crown Resin n'est approuvée que pour un usage en conjonction avec une Stainless Steel Build Platform.

Restaurations permanentes:

Inlays Couronnes

Facettes Onlays

FLPCA201 FLF FLPCA301 FLF

FLPCB101 FLPCC201

* Peut ne pas être disponible partout.

Préparé le 21/10/2020

Révision 01 21/10/2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

Permanent Crown Resin

Teintes VITA1 Classical: A2, A3, B1 et C2

	VALEURS MESURÉES	MÉTHODE
Propriétés mécaniques		
Densité	1,4-1,5 g/cm ³	Norme BEGO
Viscosité	2500-6000 MPa*s	Norme BEGO
Résistance à la flexion (après post-polymérisation) ^{2, 3, 4}	116 MPa	EN ISO 10477, EN ISO 4049
Module de flexion (après post-polymérisation)	4090 MPa	EN ISO 10477, EN ISO 4049
Solubilité dans l'eau	0,23 μg/mm ³	EN ISO 4049
Sorption d'eau	3,6 μg/mm ³	EN ISO 10477

Permanent Crown Resin est un dispositif médical en vertu de la Directive relative aux dispositifs médicaux (93/42/CEE) dans l'UE, et de la Section 201(h) du Federal Food Drug & Cosmetic (FD&C) Act.

Les restaurations imprimées avec Permanent Crown Resin ont été évaluées conformément à la norme ISO 10993-1:2018, Évaluation biologique des dispositifs médicaux - Partie 1 : Évaluation et essais au sein d'un processus de gestion du risque, et à la norme ISO 7405:2009/(R)2015, Médecine bucco-dentaire - Évaluation de la biocompatibilité des dispositifs médicaux utilisés en médecine bucco-dentaire, et répondent aux exigences pour les risques suivants en matière de biocompatibilité :

Norme ISO	Description ⁵
EN ISO 10993-5:2009	Non cytotoxique
ISO 10993-10:2010/(R)2014	Non irritant
ISO 10993-10:2010/(R)2014	Non sensibilisant
ISO 10993-3:2014	Non génotoxique
ISO 10993-1:2009	Non toxic

La résine a été développée en conformité avec les normes ISO suivantes :

Norme ISO	Description		
EN ISO 13485:2016	Dispositifs médicaux – Systèmes de management de la qualité – Exigences à des fins réglementaires		
EN ISO 14971:2019	Dispositifs médicaux - Application de la gestion des risques aux dispositifs médicaux		

VITA est la marque déposée d'une société non liée à Formlabs Inc.

2 Les propriétés de la résine peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression, et des conditions environmemtales.

³ Les échantillons de test ont été imprimés sur une imprimante Form 3B équipée d'une Stainless Steel Build Platform à une résolution de 50 µm et avec les paramètres pour Permanent Crown Resin. Les éprouvettes imprimées ont subi le post-traitement recommandé dans le mode d'emploi. Soutien du lecteur d'écran activé.

⁴ Les données des échantillons post-polymérisés ont été relevées sur un banc de flexion trois points conformément aux normes EN ISO 10477 et EN ISO 4049. Soutien du lecteur d'écran activé.

⁵ Permanent Crown Resin a été testée chez Eurofins Biopharma Product Testing, Munich GmbH.

Denture Base Resin et Denture Teeth Resin

Des matériaux durables pour des prothèses permanentes vraiment réalistes

Formlabs donne plus de possibilités d'imprimer des prothèses dentaires numériques, de facon efficace et rentable. Les résines biocompatibles longue durée de classe II pour prothèse dentaire numérique permettent aux praticiens du secteur dentaire de produire des prothèses dentaires complètes par impression 3D, avec précision et fiabilité.

Prothèses dentaires Modèles d'essayage

FLDTA101 FLDTA201 FLDTA301 FLDTAS01 FLDTB101 FLDTB201

* Peut ne pas être disponible partout.

Préparé le

16/ 09/ 2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, Révision 01 16/09/2020 l'exactitude des résultats obtenus en les utilisant.

Denture Base Resin et Denture Teeth Resin

Denture Base Resin	MÉTRIQUE 1	MÉTHODE
	Post-polymérisé ²	
Propriétés mécaniques		
Résistance à la flexion	> 50 MPa	ISO 10477
Densité	1,15 g/cm ³ < X <1,25 g/cm ³	ASTM D792-00
Denture Teeth Resin	MÉTRIQUE 1	MÉTHODE
	Post-polymérisé ²	
Propriétés mécaniques		
Résistance à la flexion	> 65 MPa ISO 20795-1	
Densité	1,15 g/cm ³ < X <1,25 g/cm ³ ASTM D792-00	

Les essais sur les propriétés biologiques des matériaux ont été menés par WuXi Apptec, 2540 Executive Drive, St. Paul, MN, et les deux résines sont certifiées biocompatibles selon la norme EN-ISO 10993-1:2009/ AC:2010 :

Norme ISO	Description	
EN-ISO 10993-3:2014	Non mutagène	
EN-ISO 10993-5:2009	Non cytotoxique	
EN-ISO 10993-10:2010	Non irritant	
EN-ISO 10993-10:2010	Non sensibilisant	
EN-ISO 10993-11:2006	Non toxic	

La résine a été développée en conformité avec les normes ISO suivantes :

Normes ISO pour Denture Base Resin	Description
EN-ISO 22112:2017	Médecine bucco-dentaire - Dents artificielles pour prothèses dentaires
EN-ISO 10477	Médecine bucco-dentaire - Produits à base de polymères pour couronnes et facettes (Type 2 et Classe 2)

Normes ISO pour Denture Teeth Resin	Description
EN-ISO 20795-1:2013	Médecine bucco-dentaire - Polymères de base - Partie 1 : Polymères pour base de prothèses dentaires

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

 $^{^2}$ Les données ont été obtenues pour des pièces brutes après post-polymérisation à 108 W sous Blue UVA (315 – 400 nm) par exposition pendant 1 heure à 6 lampes 18 W/78 (Dulux blue UV-A), à une température de 80 °C (176 °F).

Pack de démarrage Soft Tissue Resin

Un matériau de modèle souple personnalisable en couleur pour travailler les cas prothétiques numériques

Créez des masques gingivaux flexibles à utiliser en combinaison avec des modèles dentaires rigides. Vérifiez les prothèses implantaires en toute confiance en ajoutant à votre modèle de production des composants amovibles qui simulent les tissus mous. Utilisez le pack de démarrage Soft Tissue Resin pour créer votre propre Soft Tissue Resin dans la teinte rose vif, moyen ou pâle de votre choix.

Le pack de démarrage Soft Tissue Resin utilise Flexible 80A Resin en tant que matériau flexible de base.

Remarque : ajouter Color Pigment à Flexible 80A Resin pour créer Soft Tissue Resin altérera certaines propriétés mécaniques du matériau de base.

Soft Tissue Resin pour modèles d'implant

Fausses gencives

Préparé le 18/11/2020

^{*} Peut ne pas être disponible partout.

	MÉTRIQUE 1		IMPÉRIAL 1		MÉTHODE
	Brut	Post-polymérisé ²	Brut	Post-polymérisé ²	
Propriétés en traction					
Résistance à la rupture par traction ³	3,7 MPa	8,9 MPa	539 psi	1290 psi	ASTM D 412-06 (A)
Contrainte à 50 % d'allongement	1,5 MPa	3,1 MPa	218 psi	433 psi	ASTM D 412-06 (A)
Contrainte à 100 % d'allongement	3,5 MPa	6,3 MPa	510 psi	909 psi	ASTM D 412-06 (A)
Allongement à la rupture	100 %	120 %	100 %	120 %	ASTM D 412-06 (A)
Résistance au déchirement ⁴	11 kN/m	24 kN/m	61 lbf/in	137 lbf/in	ASTM D 624-00
Dureté Shore	70A	80A	80A	80A	ASTM 2240
Déformation permanente par compression (23 °C pendant 22 heures)	Non testé	3 %	Non testé	3 %	ASTM D 395-03 (B)
Déformation permanente par compression (70 °C pendant 22 heures)	Non testé	5 %	Non testé	5 %	ASTM D 395-03 (B)
Résistance à la fatigue par flexion Ross à 23 °C	Non testé	> 200 000 cycles	Non testé	> 200 000 cycles	ASTM D1052, (entaillée courbure de 60°, 100 cycles/minute
Résistance à la fatigue par flexion Ross à -10 °C	Non testé	> 50 000 cycles	Non testé	> 50 000 cycles	ASTM D1052, (entaillée courbure de 60°, 100 cycles/minute
Résilience Bayshore	Non testé	28 %	Non testé 28 % ASTM		ASTM D2632
Propriétés thermiques					
Température de transition vitreuse (Tv)	Non testé	27 °C	Non testé	27 °C	AMD
peuvent varier en fonction pièce: de la géométrie de la param pièce, de son orientation pendant l'impression, des promission per la propendant l'impression, des promissions de promissions de propendant l'impression, des promissions de promission de promissions de promission de p	s imprimées sur lètres Flexible 8 ès 10 minutes d Wash, puis post	obtenues à partir de la Form 3 avec les 0A Resin à 100 µm, e lavage dans la -polymérisation dans pendant 10 minutes.	3 L'essai de tra été réalisé a de 3 heures sur une épro type C usiné des feuilles.	près plus réalisé a à 23 °C, à 23 °C, uvette de type C ir	e déchirement a été près plus de 3 heures sur une éprouvette de nprimée directement.

COMPATIBILITÉ AVEC LES SOLVANTS

et de la température.

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %	
Acide acétique à 5 %	0,9	Huile minérale (légère)	0,1	
Acétone	37,4	Huile minérale (lourde)	< 0,1	
Eau de Javel (NaOCl ~5 %)	0,6	Eau salée (3,5 % NaCl)	0,5	
Acétate de butyle	51,4	Skydrol 5	10,7	
Carburant diesel	2,3	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,6	
Éther monométhylique de diéthylène-glycol	19,3	Acide fort (HCl concentré)	28,6	
Huile hydraulique	1,0	Éther monométhylique de tripropylène-glycol	13,6	
Peroxyde d'hydrogène (à 3 %)	0,7	Eau	0,7	
Isooctane (essence moteur)	1,6	Xylène	64,1	
Alcool isopropylique	11,7			

Secteur médical

Matériaux de haute performance pour applications biocompatibles

Notre nouvelle gamme de résines biocompatibles et stérilisables BioMed est fabriquée dans une usine certifiée ISO 13485 afin d'aider les fabricants de dispositifs médicaux et de postes de soins à réduire leurs coûts, à itérer rapidement et à imprimer une large gamme d'outils, d'instruments et de dispositifs à usage final qui soutiennent la pratique de la médecine.

* Veuillez noter que les résines peuvent ne pas être disponibles dans toutes les régions.

BioMed Clear Resin

Pour un contact corporel à long terme

BioMed Amber Resin

Pour un contact corporel à court terme

BioMed Clear

Résine photopolymère biocompatible pour imprimantes SLA Formlabs

BioMed Clear Resin est un matériau rigide destiné aux applications biocompatibles nécessitant un contact prolongé avec la peau ou les muqueuses. Cette résine de classe VI convient aux applications pour lesquelles la résistance à l'usure et une faible perméabilité à l'eau sont requises.

Les pièces imprimées avec BioMed Clear Resin sont compatibles avec les principales méthodes de stérilisation. BioMed Clear Resin est fabriquée dans nos installations certifiées ISO 13485 et dispose d'une déclaration de conformité auprès de l'Agence Fédérale américaine des produits alimentaires et médicamenteux (FDA, Food and Drug Administration).

Dispositifs médicaux et leurs composants

Composants de respirateurs et d'EPI

Équipements de bioprocession

Dispositifs de délivrance de médicaments

Recherche et développement

12/ 06/ 2020 Préparé le

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

BioMed Clear Resin

	MÉTRIQUE 1	IMPÉRIAL 1	MÉTHODE
	Post-polymérisé ²	Post-polymérisé ²	
Propriétés mécaniques			
Résistance à la rupture par traction	52 MPa	7,5 ksi	ASTM D638-10 (Type IV)
Module de Young	2080 MPa	302 ksi	ASTM D638-10 (Type IV)
Allongement	12 %	12 %	ASTM D638-10 (Type IV)
Propriétés en flexion			
Résistance à la flexion	84 MPa	12,2 ksi	ASTM D790-15 (Méthode B)
Module de flexion	2300 MPa	332 ksi	ASTM D790-15 (Méthode B)
Propriétés de dureté			
Dureté Shore D	78D	78D	ASTM D2240-15 (Type D)
Propriétés de résistance aux chocs			
Résistance au choc Izod	35 J/m	0,658 ft-lbf/in	ASTM D256-10 (Méthode A
Résistance au choc Izod sans entaille	449 J/m	8,41 ft-lbf/in	ASTM D4812-11
Propriétés thermiques			
Température de fléchissement sous charge à 1,8 MPa	54 °C	129 °F	ASTM D648-18 (Méthode B)
Température de fléchissement sous charge à 0,45 MPa	67 °C	152 °F	ASTM D648-18 (Méthode B)
Coefficient de dilatation thermique	82 μm/m/°C	45 μin/in/°F	ASTM E831-14
Autres propriétés			
Absorption d'eau	0,54 %	0,54 %	ASTM D570-98 (2018)

Compatibilité avec les méthodes de stérilisation

Faisceau d'électrons	Irradiation par faisceau d'électrons 35 kGy
Oxyde d'éthylène	Oxyde d'éthylène à 100 % à 55 °C pendant 180 minutes
Rayons gamma	Irradiation gamma 29,4-31,2 kGy
Stérilisation à la vapeur	Autoclave à 134 °C pendant 20 minutes Autoclave à 121 °C pendant 30 minutes

Pour davantage de détails sur la compatibilité des méthodes de stérilisation, consultez formlabs.com/medical.

Compatibilité avec les désinfectants

Désinfection chimique Alcool isopropylique à 70 % pendant 5 minutes

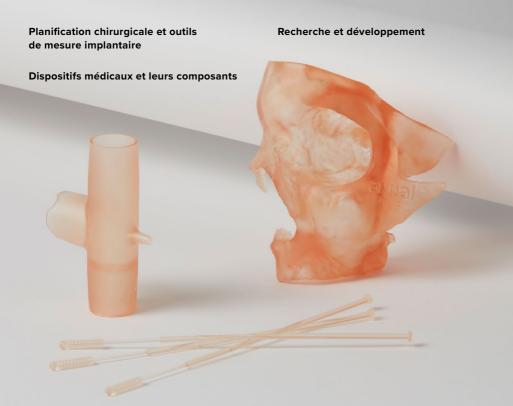
Les éprouvettes imprimées avec BioMed Clear Resin ont été évaluées conformément aux normes ISO 10993-1:2018, ISO 7405:2018 et ISO 18562-1:2017, et répondent aux exigences assorties aux risques suivants en matière de biocompatibilité :

Norme ISO	Description ³	Norme ISO	Description ³
ISO 10993-5:2009	Non cytotoxique	ISO 10993-3:2014	Non mutagène
ISO 10993-10:2010/(R)2014	Non irritant	ISO 18562-2:2017	N'émet pas de matières particulaires
ISO 10993-10:2010/(R)2014	Non sensibilisant	ISO 18562-3:2017	N'émet pas de COV
ISO 10993-17:2002, ISO 10993-18:2005	Non toxique (subaigu/subchronique)	ISO 18562-4:2017	N'émet pas de substances dangereuses hydrosolubles

La résine a été développée en conformité avec les normes ISO suivantes :

Norme ISO	Description		
EN ISO 13485:2016	Dispositifs médicaux – Systèmes de management de la qualité – Exigences à des fins réglementaires		
EN ISO 14971:2012	Dispositifs médicaux - Application de la gestion des risques aux dispositifs médicaux		

^{Les propriétés de la résine peuvent varier} en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression, de la température et des méthodes de désinfection ou de stérilisation utilisées.


² Les données ont été relevées sur des éprouvettes imprimées sur la Form 3B avec les paramètres BioMed Clear Resin à 100 µm, puis lavées dans une Form Wash pendant 20 minutes dans de l'alcool isopropylique à 99 %, et post-polymérisées à 60 °C pendant 60 minutes dans la Form Cure.

³ BioMed Clear Resin a été testée au Siège mondial de NAMSA, Ohio aux États-Unis.

BioMed Amber

Résine photopolymère biocompatible pour imprimantes SLA Formlabs

BioMed Amber Resin est un matériau rigide destiné aux applications biocompatibles nécessitant un contact à court terme. Les pièces imprimées en BioMed Amber Resin sont compatibles avec les principales méthodes de désinfection par solvant et de stérilisation. BioMed Amber Resin est fabriquée dans nos installations certifiées ISO 13485.

FLBMAM01

* Peut ne pas être disponible partout.

Préparé le 04/11/2019

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont l'état actuel de nos connaissances, les informations présentées dans ce document, l'exactitude des résultats obtenus en les utilisant.

BioMed Amber Resin

	MÉTRIQUE 1	IMPÉRIAL 1	MÉTHODE
	Post-polymérisé ²	Post-polymérisé ²	
Propriétés mécaniques			
Résistance à la rupture par traction	73 MPa	11 ksi	ASTM D638-10 (Type IV)
Module de Young	2900 MPa	420 ksi	ASTM D638-10 (Type IV)
Allongement	12 %	12 %	ASTM D638-10 (Type IV)
Propriétés en flexion			
Résistance à la flexion	103 MPa	15 ksi	ASTM D790-15 (Méthode B)
Module de flexion	2500 MPa	363 ksi	ASTM D790-15 (Méthode B)
Propriétés de dureté			
Dureté Shore D	67 D	67 D	ASTM D2240-15 (Type D)
Propriétés de résistance aux chocs			
Résistance au choc Izod	28 J/m	0,53 ft-lbf/in	ASTM D256-10 (Méthode A)
Résistance au choc Izod sans entaille	142 J/m	2,6 ft-lbf/in	ASTM D4812-11
Propriétés thermiques			
Température de fléchissement sous charge à 1,8 MPa	65 °C	149 °F	ASTM D648-18 (Méthode B)
Température de fléchissement sous charge à 0,45 MPa	78 °C	172 °F	ASTM D648-18 (Méthode B)
Coefficient de dilatation thermique	66 μm/m/°C	37 μin/in/°F	ASTM E831-14

Compatibilité avec les méthodes de stérilisation

Faisceau d'électrons	Irradiation par faisceau d'électrons 35 kGy
Oxyde d'éthylène	Oxyde d'éthylène à 100 % à 55 °C pendant 180 minutes
Rayons gamma	Irradiation gamma 29,4-31,2 kGy
Stérilisation à la vapeur	Autoclave à 134 °C pendant 20 minutes Autoclave à 121 °C pendant 30 minutes

Pour davantage de détails sur la compatibilité des méthodes de stérilisation, consultez formlabs.com/medical.

Compatibilité avec les désinfectants

Désinfection chimique	Alcool isopropylique à 70 % pendant 5 minutes
-----------------------	---

BioMed Amber Resin a été évaluée conformément à la norme ISO 10993-1:2018, Évaluation biologique des dispositifs médicaux - Partie 1: Évaluation et essais au sein d'un processus de gestion du risque, et à la norme ISO 7405:2009/(R)2015, Médecine bucco-dentaire - Évaluation de la biocompatibilité des dispositifs médicaux utilisés en médecine bucco-dentaire, et répondent aux exigences pour les risques suivants en matière de biocompatibilité :

Norme ISO	Description ³
ISO 10993-5:2009	Non cytotoxique
ISO 10993-10:2010/(R)2014	Non irritant
ISO 10993-10:2010/(R)2014	Non sensibilisant

La résine a été développée en conformité avec les normes ISO suivantes :

Norme ISO	Description		
EN ISO 13485:2016	Dispositifs médicaux – Systèmes de management de la qualité – Exigences à des fins réglementaires		
EN ISO 14971:2012	Dispositifs médicaux - Application de la gestion des risques aux dispositifs médicaux		

¹ Les propriétés de la résine peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression, de la température et des méthodes de désinfection ou de stérilisation utilisées.

² Les données pour les échantillons post-polymérisés ont été mesurées sur des barres de traction de type IV, imprimées sur des imprimantes Form 2 et Form 3B (mesures thermiques et de résistance aux chocs) avec les paramètres BioMed Amber Resin à 100 μm, lavées dans une Form Wash pendant 20 minutes dans de l'alcool isopropylique à 99 %, et post-polymérisées à 60 °C pendant 30 minutes dans une Form Cure.

³ BioMed Amber Resin a été testée au Siège mondial de NAMSA, Ohio, aux États-Unis.

Joaillerie

Des matériaux à haut niveau de détail pour la conception et la fabrication en joaillerie

Les résines Formlabs pour la joaillerie permettent de reproduire de manière fiable des sertissages nets, des griffes fines, des anneaux lisses et des motifs détaillés grâce aux imprimantes 3D stéréolithographiques de bureau les plus vendues au monde. Que vous imprimiez en 3D des modèles d'essai pour les clients, des pièces de joaillerie personnalisées prêtes à mouler ou des masters de moule réutilisables pour une production de bijoux en série, Formlabs a le matériau qu'il vous faut.

^{*} Veuillez noter que les résines peuvent ne pas être disponibles dans toutes les régions.

Castable Wax 40 Resin

Sertissages nets, griffes fines, anneaux lisses, détails fins en surface

Castable Wax Resin

Une coulée fiable avec un brûlage propre

formlahs 🛇 **JOAILLERIE**

Castable Wax 40

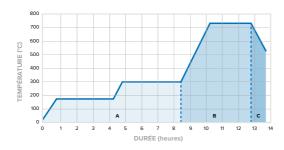
Qu'il s'agisse de réaliser des bijoux nuptiaux complexes ou des pièces volumineuses et exigeantes, Castable Wax 40 Resin offre le processus de travail le plus facile du marché pour l'impression 3D et le moulage de créations élaborées et hautement détaillées.

Castable Wax 40 Resin permet un niveau de détail élevé et une finition de surface lisse et présente des caractéristiques de manipulation similaires à la cire à sculpter bleue. Avec une charge de cire de 40 % et une faible dilatation, Castable Wax 40 Resin se prête à une grande variété de conditions de moulage à la cire perdue et est compatible avec les principaux matériaux de moulage en gypse.

10/12/2020 Préparé le Révision 01 10/12/2020 Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1	IMPÉRIAL 1	MÉTHODE
	Brut ²	Brut ²	
Propriétés du brûlage			
Température à 5 % de perte de masse	249 °C	480 °C	ASTM E 1131
Teneur en cendres (ATG)	0,0-0,1 %	0,0-0,1 %	ASTM E 1131

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.


COURBE DE BRÛLAGE DE CASTABLE WAX 40 RESIN

La programmation de brûlage suivante est conçue pour contribuer à réduire la dilatation thermique de la résine dans le moule tout en garantissant un brûlage complet pour les pièces de joaillerie de forte épaisseur. Formlabs recommande la poudre de moulage pour fonte à cire perdue Certus Prestige Optima.

Commencez par suivre cette programmation, puis ajustez-la au besoin.

Apprenez comment affiner le processus de brûlage et la préparation du moulage pour obtenir les meilleurs résultats sur la page d'assistance.

		PHASE	DURÉE	CYCLE EN °C	CYCLE EN °F
	Repos sur banc de chauffage Placez les moufles dans le four pour un séchage à chaud une fois le temps de prise du matériau de moulage terminé (30–60 min). La température élevée fait passer la cire de l'état solide à l'état de résine pour réduire la dilatation.	Palier	180 minutes	55 °C	131 °F
А	Transition thermique La carotte de coulage en cire fond et la circulation d'air vers la pièce en résine augmente. La charge de cire présente dans la résine se diffuse dans le moulage. Le brûlage commence doucement, formant la pièce sans dilatation brutale.	Montée Palier Montée Palier	48 minutes 180 minutes 75 minutes 180 minutes	2 °C/min 150 °C 2,0 °C/min 300 °C	3,6 °F/min 302 °F 3,6 °F/min 572 °F
В	Brûlage Élimine les résidus de résine et de cendre dans le produit de moulage.	Montée Palier	108 minutes 180 minutes	4,0 °C/min 732 °C	7,2 °F/min 1350 °F
С	Température de coulée Le moufledoit être refroidi à la température de coulée adaptée au métal choisi.	Baisse Période de fonte	44 minutes Jusqu'à 2 heures	-5 °C/min Température de fonte souhaitée	-9 °F/min Température de fonte souhaitée

Informations de lavage :

Lavez les impressions en Castable Wax 40 Resin dans de l'alcool isopropylique durant 5 minutes. Rincez 5 minutes dans un deuxième bain d'alcool isopropylique plus propre pour éliminer tout résidu de résine non polymérisée. Séchez complètement les pièces à l'air comprimé. N'utilisez pas de TPM pour le nettoyage des pièces.

Informations de post-polymérisation :

La post-polymérisation n'est pas nécessaire pour les impressions volumineuses en Castable Wax 40 Resin, mais elle peut au besoin améliorer la résistance de la pièce aux manipulations. Polymérisez les pièces jusqu'à 30 minutes sans appliquer de chaleur.

² Les données ont été obtenues à partir de pièces brutes imprimées sur la Form 3, avec les paramètres Castable Wax 40 Resin, à 50 µm d'épaisseur et sans post-polymérisation.

formlabs 😿 **JOAILLERIE**

Castable Wax Resin

Des détails nets et un moulage propre et fiable à chaque impression.

Castable Wax Resin est un matériau contenant 20 % de cire, permettant un brûlage fiable et propre, sans aucune cendre. Elle restitue parfaitement les détails complexes et donne des surfaces lisses, caractéristiques de l'impression stéréolithographique.

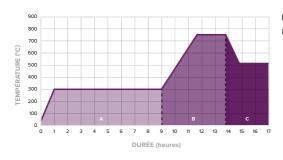
FLCWPU01

* Peut ne pas être disponible partout.

Préparé le

05/ 07/ 2018 Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, Révision 01 05/07/2018 l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1	IMPÉRIAL 1	MÉTHODE	
	Brut ²	Brut ²		
Propriétés en traction				
Résistance à la rupture par traction	12 MPa	1680 psi	ASTM D 638-10	
Module de traction	220 MPa	32 ksi	ASTM D 638-10	
Allongement à la rupture	13 %	13 %	ASTM D 638-10	
Propriétés du brûlage				
Température à 5 % de perte de masse	249 °C	480 °C	ASTM E 1131	
Teneur en cendres (ATG)	0,0-0,1 %	0,0-0,1 %	ASTM E 1131	


¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression, des paramètres d'impression et de la température.

CYCLE DE BRÛLAGE STANDARD

Le cycle de brûlage standard est conçu pour fournir la plus grande solidité d'investissement possible et un brûlage complet des détails les plus fins en utilisant Certus Prestige Optima ou des matériaux de moulage similaires.

Commencez par suivre ce cycle, puis ajustez-le au besoin.

		PHASE	DURÉE	CYCLE EN °C	CYCLE EN °F
		Insérer les moufles	0 minutes	21 °C	70 °F
		Montée	60 minutes	4,7 °C/min	8,4 °F/min
		Palier	480 minutes	300 °C	572 °F
	В	Montée	100 minutes	4,5 °C/min	8,1 °F/min
	ь	Palier	180 minutes	750 °C	1382 °F
		Baisse	60 minutes	-4,0 °C/min	-7,1 °F/min
	С	Période de coulée	Jusqu'à 2 heures	512 °C (ou temp. de moulage souhaitée)	954 °F (ou temp. de moulage souhaitée)

Informations de post-polymérisation :

Post-polymérisation non requise.

² Les données ont été obtenues à partir de pièces imprimées sur la Form 2, avec les paramètres Castable Resin Détails fins à 50 μm, après lavage et sans post-polymérisation.

TECHNOLOGIE D'IMPRESSION

SLS

Frittage sélectif par laser

formlabs 😿 **MATÉRIAUX SLS**

Nylon 12

Poudre SLS pour des prototypes et des pièces finales robustes et fonctionnels

Avec une résistance à la rupture par traction, une conductivité et une stabilité environnementale élevées, Nylon 12 Powder convient à la création d'assemblages complexes et de pièces durables présentant une absorption d'eau minimale.

Nylon 12 Powder est développée spécifiquement pour une utilisation avec la Fuse 1.

FLP12G01

* Peut ne pas être disponible partout.

Préparé le

19/08/2020

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, **Révision 01** 19/ 08/ 2020 l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1	IMPÉRIAL 1	MÉTHODE
Propriétés mécaniques			
Résistance à la rupture par traction	50 MPa	7252 psi	ASTM D638 Type 1
Module de traction	1850 MPa	268 ksi	ASTM D638 Type 1
Allongement à la rupture (X/Y)	11 %	11 %	ASTM D638 Type 1
Allongement à la rupture (Z)	6 %	6 %	ASTM D638 Type 1
Propriétés en flexion			
Résistance à la flexion	66 MPa	9572 psi	ASTM D 790-15
Module de flexion	1600 MPa	232 ksi	ASTM D 790-15
Propriétés de résistance aux chocs			
Résistance au choc Izod	32 J/m	0,60 ft-lb/in	ASTM D256-10
Propriétés thermiques			
Température de fléchissement sous charge à 1,8 MPa	87 °C	189 °F	ASTM D648
Température de fléchissement sous charge à 0,45 MPa	171 °C	340 °F	ASTM D648
Température de ramollissement Vicat	175 °C	347 °F	ASTM D1525
Autres propriétés			
Taux d'humidité (poudre)	0,25 %	0,25 %	ISO 15512 Méthode D
Absorption d'eau (pièce imprimée)	0,66 %	0,66 %	ASTM D570

Les éprouvettes imprimées avec Nylon 12 Powder ont été évaluées conformément à la norme ISO 10993-1:2018 et répondent aux exigences pour les risques suivants en matière de biocompatibilité :

Norme ISO	Description 3,4
ISO 10993-5:2009	Non cytotoxique
ISO 10993-10:2010/(R)2014	Non irritant
ISO 10993-10:2010/(R)2014	Non sensibilisant

de la géométrie de la pièce, de son orientation pendant l'impression et de la température.

COMPATIBILITÉ AVEC LES SOLVANTS

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %
Acide acétique à 5 %	0,1	Huile minérale (lourde)	0,7
Acétone	0,1	Huile minérale (légère)	0,5
Eau de Javel (NaOCI ~5 %)	0,2	Eau salée (3,5 % NaCl)	0,2
Acétate de butyle	0,2	Skydrol 5	0,6
Carburant diesel	0,4	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,2
Éther monométhylique de diéthylène-glycol	0,5	Acide fort (HCl concentré)	0,8
Huile hydraulique	0,6	Éther monométhylique de tripropylène-glycol	0,3
Peroxyde d'hydrogène (à 3 %)	0,2	Eau	0,1
Isooctane (essence moteur)	< 0,1	Xylène	0,1
Alcool isopropylique	0,2		

¹ Les propriétés du matériau ² Les pièces ont été imprimées peuvent varier en fonction sur la Fuse 1 avec Nylon 12 Powder. Les pièces ont été stabilisées à 50 % d'humidité relative et à 23 °C pendant sept jours avant d'être testées.

³ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce et des pratiques de fabrication. La validation de l'adéquation des pièces imprimées pour leur usage prévu est la responsabilité du fabricant.

⁴ Nylon 12 Powder a été testée au siège mondial de NAMSA, Ohio, aux États-Unis.

MATÉRIAUX SLS formlabs ₩

Nylon 11

Nylon 11 Powder pour une haute performance et un impact élevé

Pour des pièces ductiles et robustes, Nylon 11 Powder est un matériau en nylon biosourcé de haute performance, destiné au prototypage fonctionnel et à la production en petites séries. Nylon 11 Powder convient à l'impression de pièces qui doivent se plier ou résister aux chocs.

Nylon 11 Powder est développé spécifiquement pour une utilisation avec le Fuse 1.

FLP11B01

Peut ne pas être disponible partout.

Préparé le 06/05/20

Révision 01 06/05/202

Dans l'état actuel de nos connaissances, les informations présentées dans ce document sont exactes. Toutefois, Formlabs, Inc., ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisant.

	MÉTRIQUE 1,2	IMPÉRIAL 1,2	MÉTHODE
Propriétés mécaniques			
Résistance à la rupture par traction	49 MPa	7107 psi	ASTM D 638-14 Type 1
Module de traction	1,6 GPa	232 ksi	ASTM D 638-14 Type 1
Allongement à la rupture (X/Y)	40 %	40 %	ASTM D 638-14 Type 1
Propriétés en flexion			
Résistance à la flexion	55 MPa	7977 psi	ASTM D 790-15
Module de flexion	1,4 GPa	203 ksi	ASTM D 790-15
Propriétés de résistance aux chocs			
Résistance au choc Izod	71 J/m	1,3 ft-lb/in	ASTM D256-10
Propriétés thermiques			
Température de fléchissement sous charge à 1,8 MPa	46 °C	115 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	182 °C	360 °F	ASTM D 648-16
Température de ramollissement Vicat	189 °C	372°F	ASTM D 1525
Autres propriétés			
Taux d'humidité (poudre)	0,37 %	0,37 %	ISO 15512 Méthode D
Absorption d'eau (pièce imprimée)	0,07 %	0,07 %	ASTM D570

Nylon 11 Powder a été évalué en tant que dispositif de contact avec la peau conformément à la norme ISO 10993-1, et a satisfait aux exigences des critères de biocompatibilité suivants :

Norme ISO	Résultat du test 3,4		
EN ISO 10993-5:2009	Non cytotoxique		
ISO 10993-10:2010/(R)2014	Non Irritant		
ISO 10993-10:2010/(R)2014	Non sensibilisant		
1 Les propriétés du matériau	² Les pièces ont été imprimées	3 Les propriétés du matériau peuvent varior en fonction de la géométrie	4 Nylon 11 Powder a été

COMPATIBILITÉ AVEC LES SOLVANTS

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %
Acide acétique à 5 %	0,1	Huile minérale (légère)	0,4
Acétone	0,1	Huile minérale (lourde)	0,4
Eau de Javel (NaOCl ~5 %)	0,1	Eau salée (3,5 % NaCl)	0,1
Acétate de butyle	0,1	Skydrol 5	0,2
Carburant diesel	0,2	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,1
Éther monométhylique de diéthylène-glycol	0,4	Acide fort (HCl concentré)	1,0
Huile hydraulique	0,5	Éther monométhylique de tripropylène-glycol	0,3
Peroxyde d'hydrogène (à 3 %)	< 0,1	Eau	0,1
Isooctane (essence moteur)	< 0,1	Xylène	0,1
Alcool isopropylique	0,1		

peuvent varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression et de la température.

Sur la Fuse 1 avec Nylon 11 varier en fonction de la géométrie de la pièce, de son orientation pendant l'impression et de la température.

Sur la Fuse 1 avec Nylon 11 varier en fonction de la géométrie de la pièce et des pratiques de fabrication. La validation de l'adéquation des pièces imprimées pour leur usage prévu est la responsabilité du fabricant.

testé au siège mon de la NAMSA, OH, États-Unis.

formlabs 😿

Materialbibliothek

Funktionelle Materialien mit der nötigen Optik

North America Sales Inquiries

sales@formlabs.com 617-702-8476

formlabs.com

Europe Sales Inquiries

eu-sales@formlabs.com +44 330 027 0040 (UK) +49 1573 5993322 (EU)

formlabs.com/eu

International Sales Inquiries

Find a reseller in your region: formlabs.com/find-a-reseller

© Formlabs 2021. All rights reserved.

formlabs 😿

Materialbibliothek

Funktionelle Materialien mit der nötigen Optik