Tough 1000 Resin

Un material dúctil y resistente a los impactos con una tenacidad comparable a la del polietileno de alta densidad (PEAD)

Piezas que requieren la resistencia y la rigidez del polietileno de alta densidad

Sujeciones con guía y fijaciones resistentes a los impactos que sobrevivan a un uso de larga duración en la fábrica Mecanismos flexibles y elásticos que soporten una flexión repetida

Ensamblajes de baja ficción y superficies que no se degradan (como articulaciones esféricas)

FLT01001

Redactado 23/09/2025

Rev. 01 23/09/2025

A nuestro saber y entender, la información contenida en este documento es precisa. No obstante, Formlabs Inc. no ofrece ninguna garantía, expresa o implícita, con respecto de la exactitud de los resultados derivados del uso de este producto. La Tough 1000 Resin es un material dúctil y resistente a los impactos con una resistencia, rigidez y tenacidad comparables a las del polietileno de alta densidad (PEAD), que se ha diseñado con una resistencia excepcional al desgaste para ofrecer una tenacidad y utilidad de larga duración.

El alargamiento de rotura del 180 % y la resistencia al impacto de Gardner de 15 N·m superan a los del PEAD, haciendo este material ideal para piezas que se deben doblar, comprimir o deformar sin romperse. Las bisagras y las piezas funcionales pueden soportar esfuerzos y desgastes repetidos con un trabajo de fractura de 3200 J/m² y una fatiga por flexión Ross de más de 100 000 ciclos (a 23 °C). Este material mate de color gris oscuro está diseñado para usos que requieren superficies lisas y acabados de baja fricción.

La Tough 1000 Resin es una nueva formulación de material que aprovecha la tecnología de las impresoras de la serie Form 4, con una tenacidad a la fractura cinco veces mayor, un alargamiento de rotura veces mayor y una resistencia a la temperatura, la fluencia y el envejecimiento mejorada respecto a la Durable Resin.

Propiedades del material ¹			MÉTODO	
	No poscurada ²	Poscurada ³		
Propiedades de tracción 1			MÉTODO	
Resistencia a la rotura por tracción	23,7 MPa	26,3 MPa	ASTM D638-14	
Módulo de tracción	844 MPa	932 MPa	ASTM D638-14	
Resistencia a la deformación por tracción	18,6 MPa	21,4 MPa	ASTM D638-14	
Alargamiento en el límite elástico	4,8 %	5,0 %	ASTM D638-14	
Alargamiento de rotura	217 %	180 %	ASTM D638-14	
Propiedades de flexión ¹			MÉTODO	
Resistencia a la flexión	22,6 MPa	29,0 MPa	ASTM D790-17	
Módulo de flexión	595 MPa 761 MPa		ASTM D790-17	
Propiedades de tenacidad ¹			MÉTODO	
Resiliencia Izod entallada	69 J/m	72 J/m	ASTM D256-10	
Resiliencia Izod no entallada	Sin rotura Sin rotura		ASTM D4812-11	
Resiliencia de Charpy entallada	7,6 kJ/m²	7,6 kJ/m² 9,0 kJ/m²		
Resiliencia de Charpy no entallada	Sin rotura	180 kJ/m²	ISO 179-1	
Resistencia al impacto de Gardner a 1/32 in (0,79 mm) de grosor	13,1 J	13,1 J	ASTM D5420-21	
Resistencia al impacto de Gardner a 1/16 in (1,6 mm) de grosor	14,0 J	14,5 J	ASTM D5420-21	
Fatiga por flexión Ross	>100 000 ciclos	>100 000 ciclos	Interno (23 °C, flexión de 30 grados a 1 Hz)	
Propiedades de fractura ¹			MÉTODO	
Factor de intensidad de tensiones máximo (Kmax)	Sin probar	1,94 MPa-m ^{1/2}	ASTM D5045-14	
Trabajo de fractura (W _f)	Sin probar	3200 J/m²	ASTM D5045-14	

¹ Las propiedades pueden variar en función de la geometría de la pieza, la orientación y ajustes de impresión y la temperatura.

 $^{^2}$ Datos obtenidos de piezas impresas en una impresora Form 4, a 100 µm y con ajustes para la Tough 1000 Resin. Las piezas se han lavado en una Form Wash V2 durante 10+10 minutos en alcohol isopropílico al >99 %.

³ Datos obtenidos de piezas impresas en una impresora Form 4, a 100 µm y con ajustes para la Tough 1000 Resin. Las piezas se han lavado en una Form Wash VZ durante 10+10 minutos en alcohol isopropilico al 59% se y se han sometido a poscurado a 70 °C durante 12 minutos en una Form Cure V2.

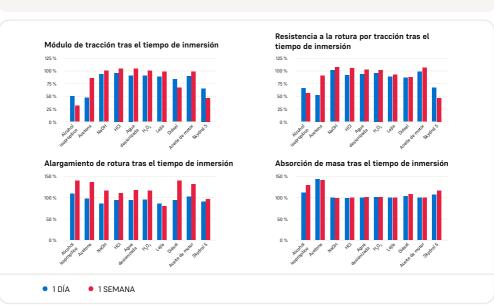
Propiedades del material ¹			MÉTODO	
	No poscurada ²	Poscurada ³		
Propiedades térmicas ¹		MÉTODO		
Temperatura de flexión bajo carga a 1,8 MPa	40,4 °C 44,6 °C		ASTM D648-16	
Temperatura de flexión bajo carga a 0,45 MPa	49,7 °C	55,3 °C	ASTM D648-16	
Expansión térmica (0-150 °C)	161,6 μm/m/°C 168,2 μm/m/°C		ASTM E831-19	
Inflamabilidad	Sin probar HB		UL 94	
Propiedades eléctricas ¹			MÉTODO	
	Poscurada ³			
Rigidez dieléctrica	15,1 kV/mm		ASTM D149-20	
Constante dieléctrica (50 Hz)	0,014		ASTM D150 (50 Hz	
Constante dieléctrica (1 kHz)	0,013		ASTM D150 (1 kHz	
Factor de disipación (50 Hz)	3,70		ASTM D150 (50 Hz	
Factor de disipación (1 kHz)	3,59		ASTM D150 (1 kHz	
Resistividad de volumen	4 * 10 ¹⁵ Ω-cm		ASTM D257-14	
Otras propiedades ¹			MÉTODO	
Dureza Shore D	56D		ASTM D2240	
Densidad aparente	1,07 g/ml		ASTM D792-20	
Viscosidad a 25 °C	4030 cP		ASTM D792-20	
Densidad líguida	1,01 g/ml		ASTM D792-20	

COMPATIBILIDAD QUÍMICA

Incremento de peso porcentual a lo largo de 24 horas para un cubo impreso y curado de $1 \times 1 \times 1$ cm inmerso en el disolvente correspondiente:

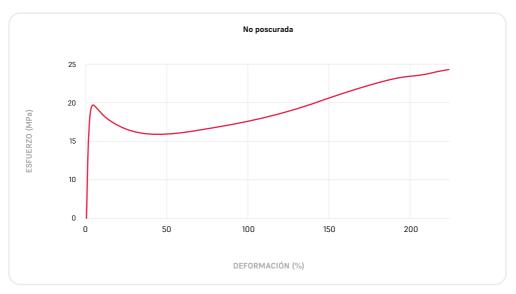
Disolvente	Incremento de peso en 24 h (%)	Disolvente	Incremento de peso en 24 h (%)	
Ácido acético (5 %)	0,2	Isoctano (gasolina)	39,8	
Acetona	30,4	Aceite mineral ligero	0,0	
Alcohol isopropílico	6,9	Aceite mineral pesado	0,1	
Lejía ~5 % NaOCl	0,0	Agua salada (3,5 % NaCl)	0,2	
Acetato de butilo	38,9	Solución de hidróxido de sodio (0,025 % pH = 10)	0,2	
Combustible diésel	0,7	Agua	0,0	
Éter monometílico de dietilenglicol	6,9	Xileno	62,7	
Aceite hidráulico	0,1	Ácido fuerte (HCl concentrado)	7,3	
Skydrol 5	5,0	Éter monometílico de tripropilenglicol	7,0	
Peróxido de hidrógeno (3 %)	0,2			

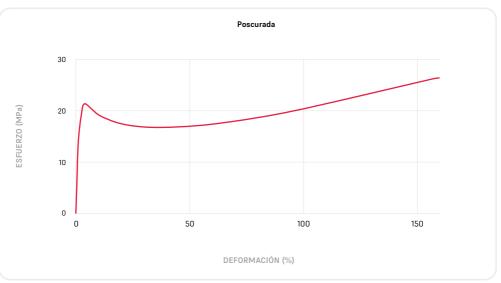
Las propiedades pueden variar en función de la geometría de la pieza,
la orientación y ajustes de impresión y la temperatura.


² Datos obtenidos de piezas impresas en una impresora Form 4, a 100 µm y con ajustes para la Touph 1000 Resin. Las piezas se han lavade en una Form Wash V2 durante 10+10 minutos en alcohol isopropilico al 299 %.

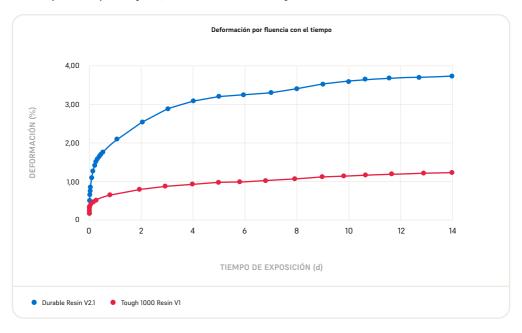
³ Datos obtenidos de piezas impresas en una impresora Form 4, a 100 µm y con ajustes para la Tough 1000 Resin. Las piezas se han lavado en una Form Wash V2 durante 10+10 minutos en alcohol isopropilico a 1×99 % ye han sometido a poscurado a 70 °C durante 12 minutos en una Form Cure V2.

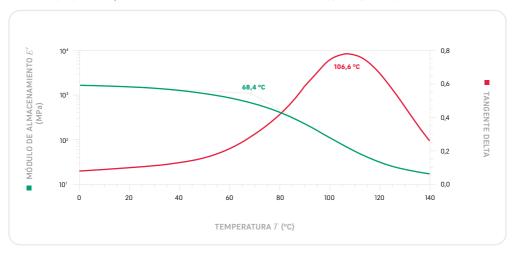
Compatibilidad química (ASTM D543)


Este material se sometió a ensayo para probar su compatibilidad química conforme a la norma ASTM D543. Se probó la influencia de diversos productos químicos midiendo el módulo de tracción y la resistencia del material después de distintos tiempos de exposición. Las muestras expuestas se metieron en contenedores y se sumergieron por completo en los productos químicos de ensayo durante un día y una semana. Después de sacarlas, las muestras expuestas se lavaron y se acondicionaron durante 24 horas a 22 °C antes de llevar a cabo los ensayos mecánicos. Los ensayos mecánicos se realizaron conforme a la norma ASTM D638 usando muestras de barras de resistencia de tipo IV en condiciones de laboratorio estándar (22 °C). Los resultados se indicaron como una diferencia de porcentaje respecto a los valores medidos en muestras no expuestas.


Disolvente	Alcohol isopropílico	Acetona	NaOH (0,025 % pH=10)	HCl (10 %)	Agua desionizada	H ₂ O ₂ (3 %)	Lejía (~5 % NaOCl)	Diésel	Aceite de motor	Skydrol 5
Módulo relativo										
1 día	52 %	47 %	94 %	97 %	91 %	91 %	88 %	83 %	91 %	65 %
1 semana	34 %	87 %	101 %	105 %	105 %	100 %	100 %	68 %	99 %	46 %
Resistencia rela	tiva									
1 día	66 %	53 %	102 %	92 %	94 %	95 %	89 %	86 %	98 %	68 %
1 semana	56 %	92 %	108 %	106 %	102 %	102 %	93 %	88 %	107 %	47 %
Alargamiento re	elativo									
1 día	109 %	99 %	87 %	94 %	94 %	96 %	87 %	95 %	103 %	91 %
1 semana	140 %	138 %	117 %	111 %	118 %	117 %	80 %	141 %	133 %	97 %
Masa relativa										
1 día	111 %	144 %	100 %	100 %	100 %	100 %	100 %	103 %	100 %	107 %
1 semana	130 %	142 %	100 %	100 %	100 %	101 %	100 %	108 %	100 %	116 %

Curva de tracción representativa (ASTM D638-14)


Tipo I, 50 mm/min


Fluencia a la flexión (ISO 6602)

Formlabs evaluó la resistencia a la fluencia de la Tough 1000 Resin usando la Norma ISO 6602. La prueba prevista por esta norma mide el índice de deformación de un material a una temperatura constante y bajo una carga fija. Las muestras se sometieron a ensayo a 22 °C, bajo una carga de 2,0 MPa. La flexión se midió a lo largo de 14 días.

Análisis mecánico dinámico (DMA)

Se muestra una curva de DMA para la Tough 1000 Resin que va de 0 °C a 140 °C a 3 °C/min. Se observa una transición vítrea a los 106,6 °C, mientras que se observa una inflexión del módulo de almacenamiento (elástico) a los 68,4 °C.

