Tough 2000 Resin V2

Steifes, strapazierfähiges Material mit einer Zähigkeit vergleichbar mit ABS

Teile mit der Festigkeit und Steifigkeit von ABS

Halterungen und Vorrichtungen für den langfristigen Einsatz im Werk Robuste Gehäuse mit hoher Temperaturresistenz und Kriechfestigkeit

Produktionsbereite Teile mit einem dunklen, matten Finish

FLT02002

Erstellt am: 10/06/2025 Revision 01: 10/06/2025 Nach unserer Kenntnis sind die angegebenen Informationen korrekt. Dennoch übernimmt Formlabs Inc. keine explizite oder implizite Garantie für die Genauigkeit der Ergebnisse, die durch die Nutzung erzielt werden.

Tough 2000 Resin V2 ist ein robustes Material, dessen Festigkeit und Steifigkeit mit Acrylnitril-Butadien-Styrol-Copolymer (ABS) vergleichbar ist. Es vereint Zähigkeit mit einer hohen Temperaturbeständigkeit und Kriechfestigkeit.

Tough 2000 Resin überzeugt in anspruchsvollen Anwendungen und liefert funktionale Prototypen und Endbauteile, die Brüchen, Verformung und Verschleiß langfristig standhalten. Dank einer Bruchdehnung von 79 % und einer Wärmeformbeständigkeitstemperatur von 70 °C behalten die Teile ihre Strukturfestigkeit auch unter mechanischer und umweltbedingter Belastung bei. Die neue Formulierung ist dunkler und hat ein mattes Finish, sodass sie sich perfekt für präsentationsbereite Teile mit hohem Detailgrad eignet.

Tough 2000 Resin V2 ist eine neue Materialformulierung, die dank der Technologie der Druckerserie Form 4 eine 3-mal höhere Bruchfestigkeit sowie eine verbesserte Temperaturbeständigkeit, Langlebigkeit und Optik bietet als die Vorgängerversion.

Materialeigenschaften ¹			METHODE		
	Grün ²	Nachgehärtet ³			
Zugeigenschaften ¹		METHODE			
Maximale Zugfestigkeit	26,1 MPa	40,4 MPa	ASTM D638-14		
Zugmodul	1235 MPa	1800 MPa	ASTM D638-14		
Streckzugfestigkeit	26,1 MPa	40,4 MPa	ASTM D638-14		
Streckdehnung	5,0 %	4,5 %	ASTM D638-14		
Bruchdehnung	149 %	79 %	ASTM D638-14		
Biegeeigenschaften ¹			METHODE		
Biegebruchfestigkeit	38 MPa	67 MPa	ASTM D790-17		
Biegemodul	1040 MPa	1701 MPa	ASTM D790-17		
Zähigkeitseigenschaften ¹			METHODE		
Izod-Schlagzähigkeit (gekerbt)	24 J/m	25 J/m	ASTM D256-10		
Izod-Schlagzähigkeit (ungekerbt)	323 J/m 325 J/m		ASTM D4812-11		
Charpy-Schlagzähigkeit (gekerbt)	2 kJ/m²	2,4 kJ/m²	ISO 179-1		
Charpy-Schlagzähigkeit (ungekerbt)	20 kJ/m²	31 kJ/m²	ISO 179-1		
Gardner-Schlagzähigkeit bei 0,79 mm (1/32") Dicke	4,8 J	1,6 J	ASTM D5420-21		
Ross-Biegewechselfestigkeit	11 900 Zyklen 3560 Zyklen		Intern (23 °C, 30° Verformun bei 1 Hz)		
Brucheigenschaften ¹			METHODE		
Maximaler Spannungsintensitätsfaktor (Kmax)	1,4 MPa-m ^{1/2}	1,65 MPa-m ^{1/2}	ASTM D5045-14		
Brucharbeit (W _f)	330 J/m²	305 J/m²	ASTM D5045-14		

¹ Materialeigenschaften k\u00f6nnen abh\u00e4ngig von Druckgeometrie, Druckausrichtung, Druckeinstellungen und Temperatur variieren.

² Die Daten wurden von Teilen gewonnen, die mit einem Form 4 bei 100 µm mit Einstellungen für Tough 2000 Resin V2 gedruckt und in einem Form Wash V2 10+5 Minuten lang in ≥ 99%igem Isopropylalkohol gewaschen wurden.

³ Die Daten wurden von Teilen gewonnen, die mit einem Form 4 bei 100 µm mit Einstellungen für Tough 2000 Resin V2 gedruckt, in einem Form Wash V2 üb-5 Minuten lang in > 99%igem isopropylakkoh gewaschen und 12 Minuten lang bei 70 °C nachgehärtet wurden.

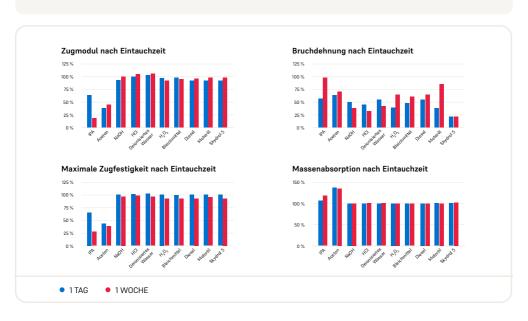
Materialeigenschaften ¹			METHODE	
	Grün ²	Nachgehärtet ³		
Thermische Eigenschaften ¹			METHODE	
Wärmeformbeständigkeitstemp. bei 1,8 MPa	45 °C	57 °C	ASTM D648-16	
Wärmeformbeständigkeitstemp. bei 0,45 MPa	53 °C	70 °C	ASTM D648-16	
Wärmeausdehnung (0–150 °C)	142,6 μm/m/°C 134,2 μm/m/°C		ASTM E831-13	
Entflammbarkeit	Nicht getestet Bestanden		UL 94	
Elektrische Eigenschaften ¹			METHODE	
	Nachgehärtet ³			
Durchschlagfestigkeit	15,5 kV/mm		ASTM D149-20	
Dielektrische Konstante (50 Hz)	3,46		ASTM D150 (50 Hz)	
Dielektrische Konstante (1 kHz)	3,38		ASTM D150 (1 kHz)	
Verlustfaktor (50 Hz)	0,018		ASTM D150 (50 Hz)	
Verlustfaktor (1 kHz)	0,012		ASTM D150 (1 kHz)	
Volumenwiderstand	3 * 10 ¹⁵ Ω-cm		ASTM D257-14	
Andere Eigenschaften ¹			METHODE	
Shore-Härte D	61D		ASTM D2240	
Schüttdichte	1,09 g/ml		ASTM D792-20	
Viskosität bei 25 °C	2680 cP		ASTM D792-20	
Flüssigkeitsdichte	1,03 g/ml		ASTM D792-20	

CHEMIKALIENBESTÄNDIGKEIT

Gewichtszunahme in Prozent über einen Zeitraum von 24 Stunden für einen gedruckten und nachgehärteten Würfel von 1 x 1 x 1 cm im jeweiligen Lösungsmittel:

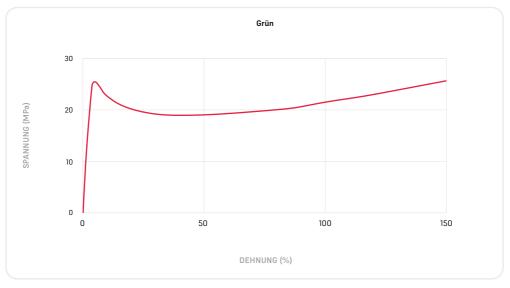
Lösungsmittel	Gewichtszunahme in % über 24 Std.	Lösungsmittel	Gewichtszunahme in % über 24 Std.		
Essigsäure (5 %)	0,17	Isooctan (Benzin)	21,24		
Aceton	22,92	Mineralöl (leicht)	0,12		
Isopropylalkohol	4,21	Mineralöl (schwer)	0,07		
Bleichmittel (~5 % NaOCl)	0,11	Salzlösung (3,5 % NaCl)	0,16		
Butylacetat	18,65	Natriumhydroxid (0,025 %, pH 10)	0,18		
Dieselkraftstoff	0,08	Wasser	0,19		
Diethylenglykolmonomethylether	4,65	Xylol	27,69		
Hydrauliköl	0,06	Starke Säure (Chlorwasserstoff)	1,96		
Skydrol 5	0,96	TPM	1,86		
Wasserstoffperoxid (3 %)	0,21				

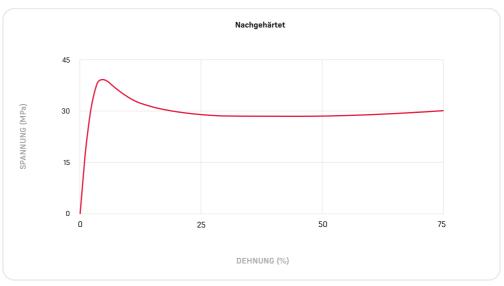
¹ Materialeigenschaften können abhängig von Druckgeometrie, Druckausrichtung, Druckeinstellungen und Temperatur variieren.


² Die Daten wurden von Teilen gewonnen, die mit einem Form 4 bei 100 µm mit Einstellungen für Tough 2000 Resin V2 gedruckt und in einem Form Wash V2 101-5 Minuten lang in ≥ 99%igem Isopropylalkohol gewaschen wurden.

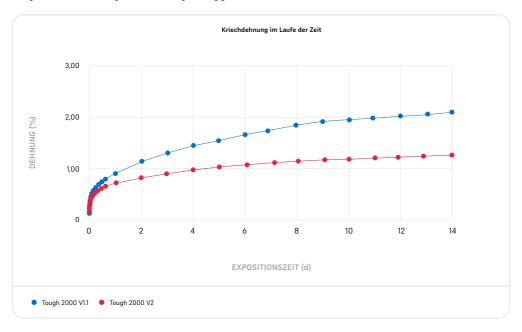
³ Die Daten wurden von Teilen gewonnen, die mit einem Form 4 bei 100 µm mit Einstellungen für Tough 2000 Resin V2 gedruckt, in einem Form Wash V2 10+5 Minuten lang in > 99%igem Isopropylaklohol gewaschen und 12 Minuten lang bei 70 °C nachgehärtet wurden.

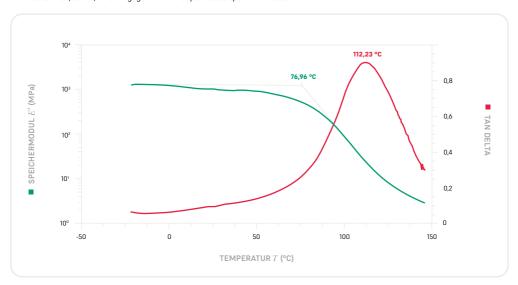
Chemikalienbeständigkeit (ASTM D543)


Gemäß ASTM D543 auf seine Chemikalienbeständigkeit geprüft. Der Einfluss verschiedener Chemikalien wurde getestet, indem nach unterschiedlichen Kontaktdauern der Zugmodul und die Festigkeit gemessen wurden. Die Proben wurden in Behältern platziert und einen Tag sowie eine Woche lang vollständig in die Testchemikalien eingetaucht. Nach der Entnahme wurden die getesteten Proben gewaschen und vor der mechanischen Prüfung für 24 Stunden bei 22 °C konditioniert. Die mechanische Prüfung erfolgte gemäß ASTM D638 mit Zugproben des Typs IV bei standardmäßigen Laborbedingungen (22 °C). Die Ergebnisse werden als prozentuale Abweichung von den an Proben ohne Chemikalienkontakt gemessenen Werten angegeben.


Lösungsmittel	IPA	Aceton	NaOH (0,025 % pH 10)	HCl (10 %)	Deionisiertes Wasser	H ₂ O ₂ (3 %)	Bleichmittel (~5 % NaOCl)	Diesel	Motoröl	Skydrol 5
Relativer Zugmodu	l									
1 Tag	63 %	37 %	93 %	100 %	103 %	100 %	98 %	93 %	92 %	93 %
1 Woche	18 %	45 %	100 %	104 %	106 %	92 %	95 %	97 %	98 %	98 %
Relative Festigkeit										
1 Tag	66 %	43 %	101 %	102 %	102 %	102 %	100 %	101 %	101 %	101 %
1 Woche	27 %	39 %	97 %	99 %	97 %	93 %	92 %	92 %	96 %	94 %
Relative Dehnung										
1 Tag	116 %	131 %	102 %	100 %	111 %	81 %	97 %	113 %	77 %	43 %
1 Woche	197 %	144 %	78 %	65 %	85 %	133 %	123 %	131 %	173 %	45 %
Relative Masse										
1 Tag	107 %	139 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	102 %
1 Woche	119 %	137 %	101 %	100 %	101 %	101 %	100 %	101 %	100 %	103 %

Repräsentativer Zugverlauf (ASTM D638-14)


Typ I, 5 mm/min


Biegekriechverhalten ISO 6602

Formlabs hat die Kriechbeständigkeit von Tough 2000 Resin V2 gemäß ISO 6602 bewertet. Bei diesem Test wird die Verformungsrate des Materials bei einer konstanten Temperatur unter fixer Belastung gemessen. Die Proben wurden bei 22 °C unter 4,0 MPa Belastung getestet. Die Verformung wurde über 14 Tage hinweg gemessen.

Dynamische mechanische Analyse (DMA)

Es ist eine DMA-Kurve von Tough 2000 Resin V2 von 0 °C bis 150 °C bei 3 °C/min abgebildet. Bei 112,2 °C wird ein Glasübergang beobachtet, bei 76,96 °C hingegen ein Wendepunkt des Speichermoduls.

