# Tough 2000 Resin V2

Un material rígido, resistente y tenaz comparable al ABS

Piezas que requieren la resistencia y la rigidez del ABS

Sujeciones con guía y fijaciones que sobrevivan a un uso de larga duración en la fábrica Carcasas robustas con resistencia a las altas temperaturas y a la fluencia

Piezas listas para la producción con un acabado oscuro y mate





FLT02002

06/10/2025

Redactado 06/10/2025

A nuestro saber y entender, la información contenida en este documento es precisa. No obstante, Formlabs Inc. no ofrece ninguna garantía, expresa o implicita, con respecto de la exactitud de los resultados derivados del uso de este producto. La Tough 2000 Resin V2 es un material robusto con una resistencia y una rigidez comparables a las del acrilonitrilo butadieno estireno (ABS), combinando tenacidad y resistencia a las altas temperaturas y la fluencia.

La Tough 2000 Resin es excelente para usarla en entornos exigentes y produce prototipos muy funcionales y piezas de uso final resistentes a la rotura, la deformación y un uso de larga duración. Gracias a su alargamiento de rotura del 79 % y a una temperatura de flexión bajo carga de 70 °C, las piezas mantienen su integridad estructural cuando se ven sometidas a esfuerzos mecánicos y ambientales. La nueva formulación es más oscura y tiene un acabado mate, lo que permite crear piezas listas para presentaciones con detalles mejorados y un acabado liso.

La Tough 2000 Resin V2 es una nueva formulación de material que aprovecha la tecnología de las impresoras de la serie Form 4 para producir una tenacidad a la fractura tres veces mayor y una mejora del rendimiento en temperaturas extremas, la longevidad y la estética del material respecto a su versión anterior.

| Propiedades del material <sup>1</sup>                              |                           |                                                 | MÉTODO        |  |
|--------------------------------------------------------------------|---------------------------|-------------------------------------------------|---------------|--|
|                                                                    | No poscurada <sup>2</sup> | Poscurada <sup>3</sup>                          |               |  |
| Propiedades de tracción <sup>1</sup>                               |                           | MÉTODO                                          |               |  |
| Resistencia a la rotura por tracción                               | 26,1 MPa                  | 40,4 MPa                                        | ASTM D638-14  |  |
| Módulo de tracción                                                 | 1235 MPa                  | 1800 MPa                                        | ASTM D638-14  |  |
| Resistencia a la deformación por tracción                          | 26,1 MPa                  | 40,4 MPa                                        | ASTM D638-14  |  |
| Alargamiento en el límite elástico                                 | 5,0 %                     | 4,5 %                                           | ASTM D638-14  |  |
| Alargamiento de rotura                                             | 149 %                     | 79 %                                            | ASTM D638-14  |  |
| Propiedades de flexión¹                                            |                           | MÉTODO                                          |               |  |
| Resistencia a la flexión                                           | 38 MPa                    | 67 MPa                                          | ASTM D790-17  |  |
| Módulo de flexión                                                  | 1040 MPa                  | 1701 MPa                                        | ASTM D790-17  |  |
| Propiedades de tenacidad¹                                          |                           | MÉTODO                                          |               |  |
| Resiliencia Izod entallada                                         | 24 J/m                    | 25 J/m                                          | ASTM D256-10  |  |
| Resiliencia Izod no entallada                                      | 323 J/m                   | 325 J/m                                         | ASTM D4812-11 |  |
| Resiliencia de Charpy entallada                                    | 2 kJ/m²                   | 2,4 kJ/m²                                       | ISO 179-1     |  |
| Resiliencia de Charpy no entallada                                 | 20 kJ/m²                  | 31 kJ/m <sup>2</sup>                            | ISO 179-1     |  |
| Resistencia al impacto de Gardner<br>a 1/32 in (0,79 mm) de grosor | 4,8 J                     | 1,6 J                                           | ASTM D5420-21 |  |
| Fatiga por flexión Ross                                            | 11 900 ciclos             | Interno (23 °C, flexión<br>de 30 grados a 1 Hz) |               |  |
| opiedades de fractura¹                                             |                           |                                                 | MÉTODO        |  |
| Factor de intensidad de tensiones máximo (Kmax)                    | 1,4 MPa-m <sup>1/2</sup>  | 1,65 MPa-m <sup>1/2</sup>                       | ASTM D5045-14 |  |
| Trabajo de fractura (W <sub>f</sub> )                              | 330 J/m²                  | 305 J/m²                                        | ASTM D5045-14 |  |

<sup>&</sup>lt;sup>1</sup> Las propiedades pueden variar en función de la geometría de la pieza, la orientación y ajustes de impresión y la temperatura.

<sup>2</sup> Datos obtenidos de piezas impresas en una impresora Form 4, a 100 µm y con ajustes para la Tough 2000 Resin V2. Las piezas se han Isavado en una Form Wash V2 durante 10+5 minutos en alcohol isopropilico al ≥99 %.

<sup>&</sup>lt;sup>3</sup> Datos obtenidos de piezas impresas en una impresora Form 4, a 100 µm y con ajuates para la Tough 2000 Resin V2. Las piezas se han lavado en una Form Wash V2 durante 10°F5 minutos en alcohol isopropilico al 590 % y se han sometido a poscurado a 70 °C durante 12 minutos en una Form Cure V2.

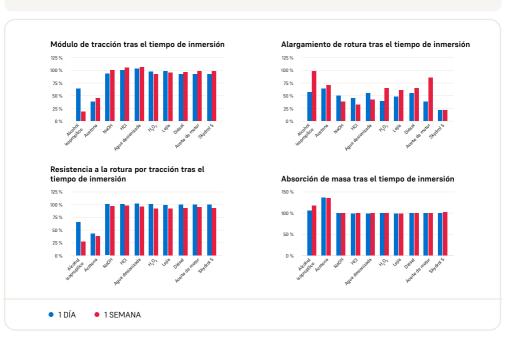
| Propiedades del material¹                    |                           |                        | MÉTODO            |  |
|----------------------------------------------|---------------------------|------------------------|-------------------|--|
|                                              | No poscurada <sup>2</sup> | Poscurada <sup>3</sup> |                   |  |
| Propiedades térmicas¹                        |                           | MÉTODO                 |                   |  |
| Temperatura de flexión bajo carga a 1,8 MPa  | 45 °C                     | 57 °C                  | ASTM D648-16      |  |
| Temperatura de flexión bajo carga a 0,45 MPa | 53 °C                     | 70 °C                  | ASTM D648-16      |  |
| Expansión térmica (0-150 °C)                 | 142,6 μm/m/°C             | 134,2 μm/m/°C          | ASTM E831-19      |  |
| Inflamabilidad                               | Sin probar                | Éxito                  | UL 94             |  |
| Propiedades eléctricas <sup>1</sup>          |                           |                        | MÉTODO            |  |
|                                              | Poscurada <sup>3</sup>    |                        |                   |  |
| Rigidez dieléctrica                          | 15,5 kV/mm                |                        | ASTM D149-20      |  |
| Constante dieléctrica (50 Hz)                | 3,46                      |                        | ASTM D150 (50 Hz) |  |
| Constante dieléctrica (1 kHz)                | 3,38                      |                        | ASTM D150 (1 kHz) |  |
| Factor de disipación (50 Hz)                 | 0,018                     |                        | ASTM D150 (50 H   |  |
| Factor de disipación (1 kHz)                 | 0,012                     |                        | ASTM D150 (1 kH:  |  |
| Resistividad de volumen                      | 3 * 10¹5 Ω-cm             |                        | ASTM D257-14      |  |
| Otras propiedades <sup>1</sup>               |                           |                        | MÉTODO            |  |
| Dureza Shore D                               | 61D                       |                        | ASTM D2240        |  |
| Densidad aparente                            | 1,09 g/ml                 |                        | ASTM D792-20      |  |
| Viscosidad a 25 °C                           | 2680 cP                   |                        | ASTM D792-20      |  |
| Densidad líquida                             | 1,03 g/ml                 |                        | ASTM D792-20      |  |

## COMPATIBILIDAD QUÍMICA

Incremento de peso porcentual a lo largo de 24 horas para un cubo impreso y curado de  $1 \times 1 \times 1$  cm inmerso en el disolvente correspondiente:

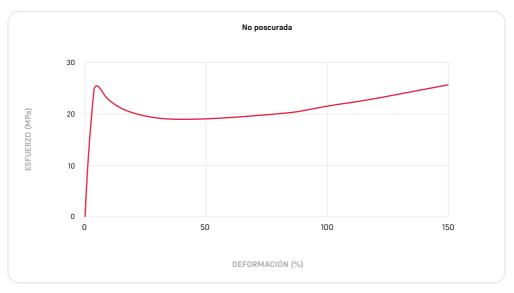
| Disolvente                             | Incremento de peso<br>en 24 h (%) | Disolvente                                          | Incremento de pes<br>en 24 h (%) |  |  |
|----------------------------------------|-----------------------------------|-----------------------------------------------------|----------------------------------|--|--|
| Ácido acético (5 %)                    | 0,17                              | Isoctano (gasolina)                                 | 21,24                            |  |  |
| Acetona                                | 22,92                             | Aceite mineral ligero                               | 0,12                             |  |  |
| Alcohol isopropílico                   | 4,21                              | Aceite mineral pesado                               | 0,07                             |  |  |
| Lejía ~5 % NaOCl                       | 0,11                              | Agua salada (3,5 % NaCl)                            | 0,16                             |  |  |
| Acetato de butilo                      | 18,65                             | Solución de hidróxido de sodio<br>(0,025 % pH = 10) | 0,18                             |  |  |
| Combustible diésel                     | 0,08                              | Agua                                                | 0,19                             |  |  |
| Éter monometílico<br>de dietilenglicol | 4,65                              | Xileno                                              | 27,69                            |  |  |
| Aceite hidráulico                      | 0,06                              | Ácido fuerte (HCl concentrado)                      | 1,96                             |  |  |
| Skydrol 5                              | 0,96                              | Éter monometílico de tripropilenglicol              | 1,86                             |  |  |
| Peróxido de hidrógeno (3 %)            | 0,21                              |                                                     |                                  |  |  |

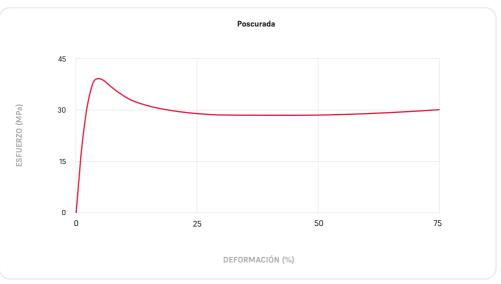
Las propiedades pueden variar en función de la geometría de la pieza,
la orientación y ajustes de impresión y la temperatura.


<sup>&</sup>lt;sup>2</sup> Datos obtenidos de piezas impresas en una impresora Form 4, a 100 µm y con ajustes para la Tough 2000 Resin V2. Las piezas se han lavado en una Form Wash V2 durante 10+5 minutos en alcohel isopropilico al >99 %.

<sup>&</sup>lt;sup>3</sup> Datos obtenidos de piezas impresas en una impresora Form 4, a 100 µm y con ajustes para la Tough 2000 Resin V2. Las piezas se han lavado en una Form Wash V2 durante 10+5 minutos en alcohol (sapropilica al 59% ys. en a sometido a poscurado a 70 °C durante 12 minutos en una Form Cure V2.

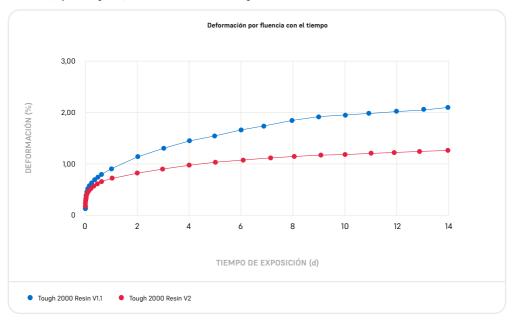
#### Compatibilidad química (ASTM D543)


Este material se sometió a ensayo para probar su compatibilidad química conforme a la norma ASTM D543. Se probó la influencia de diversos productos químicos midiendo el módulo de tracción y la resistencia del material después de distintos tiempos de exposición. Las muestras expuestas se metieron en contenedores y se sumergieron por completo en los productos químicos de ensayo durante un día y una semana. Después de sacarlas, las muestras expuestas se lavaron y se acondicionaron durante 24 horas a 22 °C antes de llevar a cabo los ensayos mecánicos. Los ensayos mecánicos se realizaron conforme a la norma ASTM D638 usando muestras de barras de resistencia de tipo IV en condiciones de laboratorio estándar (22 °C). Los resultados se indicaron como una diferencia de porcentaje respecto a los valores medidos en muestras no expuestas.


| Disolvente       | Alcohol<br>isopropílico | Acetona | NaOH<br>(0,025 %<br>pH=10) | HCl<br>(10 %) | AGUA<br>desionizada | H <sub>2</sub> O <sub>2</sub><br>(3 %) | <b>Lejía</b><br>(~5 % NaOCl) | Diésel | Aceite<br>de motor | Skydrol 5 |
|------------------|-------------------------|---------|----------------------------|---------------|---------------------|----------------------------------------|------------------------------|--------|--------------------|-----------|
| Módulo relativo  |                         |         |                            |               |                     |                                        |                              |        |                    |           |
| 1 día            | 63 %                    | 37 %    | 93 %                       | 100 %         | 103 %               | 100 %                                  | 98 %                         | 93 %   | 92 %               | 93 %      |
| 1 semana         | 18 %                    | 45 %    | 100 %                      | 104 %         | 106 %               | 92 %                                   | 95 %                         | 97 %   | 98 %               | 98 %      |
| Resistencia rela | tiva                    |         |                            |               |                     |                                        |                              |        |                    |           |
| 1 día            | 66 %                    | 43 %    | 101 %                      | 102 %         | 102 %               | 102 %                                  | 100 %                        | 101 %  | 101 %              | 101 %     |
| 1 semana         | 27 %                    | 39 %    | 97 %                       | 99 %          | 97 %                | 93 %                                   | 92 %                         | 92 %   | 96 %               | 94 %      |
| Alargamiento re  | lativo                  |         |                            |               |                     |                                        |                              |        |                    |           |
| 1 día            | 116 %                   | 131 %   | 102 %                      | 100 %         | 111 %               | 81 %                                   | 97 %                         | 113 %  | 77 %               | 43 %      |
| 1 semana         | 197 %                   | 144 %   | 78 %                       | 65 %          | 85 %                | 133 %                                  | 123 %                        | 131 %  | 173 %              | 45 %      |
| Masa relativa    |                         |         |                            |               |                     |                                        |                              |        |                    |           |
| 1 día            | 107 %                   | 139 %   | 100 %                      | 100 %         | 100 %               | 100 %                                  | 100 %                        | 100 %  | 100 %              | 102 %     |
| 1 semana         | 119 %                   | 137 %   | 101 %                      | 100 %         | 101 %               | 101 %                                  | 100 %                        | 101 %  | 100 %              | 103 %     |

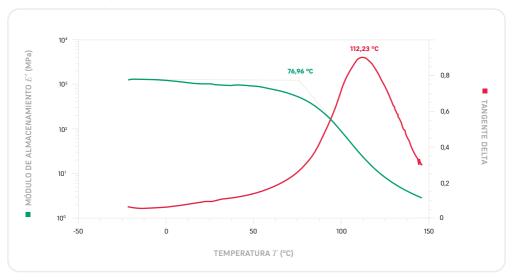


## Curva de tracción representativa (ASTM D638-14)


Tipo I, 5 mm/min






## Fluencia a la flexión (ISO 6602)

Formlabs evaluó la resistencia a la fluencia de la Tough 2000 Resin V2 usando la Norma ISO 6602. La prueba prevista por esta norma mide el índice de deformación de un material a una temperatura constante y bajo una carga fija. Las muestras se sometieron a ensayo a 22 °C, bajo una carga de 4,0 MPa. La flexión se midió a lo largo de 14 días.



### Análisis mecánico dinámico (DMA)

Se muestra una curva de DMA para la Tough 2000 Resin V2 que va de 0 °C a 150 °C a 3 °C/min. Se observa una transición vítrea a los 112,2 °C, mientras que se observa una inflexión del módulo de almacenamiento (elástico) a los 76,96 °C.

