Tough 2000 Resin V2

Materiale rigido e robusto con una tenacità paragonabile alle prestazioni dell'ABS

Parti che necessitano della resistenza e della rigidità dell'ABS

Dime e fissaggi in grado di resistere all'uso prolungato nello stabilimento di produzione

Alloggiamenti robusti e resistenti alle alte temperature e allo scorrimento

Parti pronte per la produzione con finitura opaca scura

FLT02002

Data di preparazione 10/06/2025

Rev. 01 10/06/2025

In base ai dati in nostro possesso, le informazioni contenute nel presente documento sono corrette. Tuttavia, Formlabs Inc. non fornisce alcuna garanzia, esplicita o implicita, circa l'accuratezza dei risultati ottenuti dall'utilizzo di tali informazioni.

La Tough 2000 Resin V2 è un materiale robusto, caratterizzato da una resistenza e una rigidità paragonabili all'ABS, che combina tenacità e resistenza alle alte temperature e allo scorrimento.

La Tough 2000 Resin eccelle nelle applicazioni pesanti e offre prototipi altamente funzionali e parti per utilizzo finale resistenti alla frantumazione, alla deformazione e all'usura a lungo termine. Con un allungamento a rottura del 79% e una temperatura di distorsione termica di 70°C, le parti mantengono l'integrità strutturale sotto stress meccanico e ambientale. La nuova formulazione è più scura con una finitura opaca, per parti di presentazione con dettagli migliorati e una finitura superficiale liscia.

La Tough 2000 Resin V2 è una nuova formulazione che sfrutta la tecnologia delle stampanti della serie Form 4 per offrire una tenacità a frattura 3 volte superiore, migliori prestazioni termiche, maggiore durata del materiale e un aspetto estetico migliorato rispetto alla versione precedente.

Proprietà del materiale¹			METODO		
	Stato grezzo ²	Dopo polimerizzazione post-stampa ³			
Proprietà elastiche ¹			METODO		
Carico di rottura a trazione	26.1 MPa	40.4 MPa	ASTM D638-14		
Modulo di elasticità	1235 MPa	1800 MPa	ASTM D638-14		
Carico di rottura	26.1 MPa	40.4 MPa	ASTM D638-14		
Allungamento	5.0%	4.5%	ASTM D638-14		
Allungamento a rottura	149%	79%	ASTM D638-14		
Proprietà di resistenza a flessione ¹			МЕТОДО		
Resistenza alla flessione	38 MPa	67 MPa	ASTM D790-17		
Modulo di flessione	1040 MPa	1701 MPa	ASTM D790-17		
Proprietà di tenacità¹			METODO		
Resistenza all'urto Izod con intaglio	24 J/m	25 J/m	ASTM D256-10		
Resistenza all'urto Izod senza intaglio	323 J/m	325 J/m	ASTM D4812-11		
Resistenza all'urto Charpy con intaglio	2 kJ/m²	2.4 kJ/m²	ISO 179-1		
Resistenza all'urto Charpy senza intaglio	20 kJ/m²	31 kJ/m²	ISO 179-1		
Resistenza all'urto Gardner a 0,79 mm (1/32")	4.8 J	1,6 J	ASTM D5420-21		
Resistenza al test di flessione Ross	11900 cicli 3560 cicli		Interna (23 °C, deviazione di 30 gradi a 1 hz)		
Proprietà di frattura ¹			METODO		
Massimo fattore di intensificazione delle sollecitazioni (Kmax)	1.4 MPa-m ^{1/2}	1.65 MPa-m ^{1/2}	ASTM D5045-14		
Lavoro di frattura (W _f)	330 J/m²	305 J/m²	ASTM D5045-14		

^{Le proprietà del materiale possono variare in base alla geometria} della parte, all'orientamento di stampa, alle impostazioni di stampa e alla temperatura.

² I dati sono stati ottenuti da parti stampate su una Form 4 con le impostazioni della Tough 2000 Resin V2 per 100 µm, lavate in una Form Wash V2 per 10+5 minuti in alcool isopropilico pari o superiore al 99%.

³ I deti sono stati ottenuti da parti stampate su una Form 4 con le impostazioni della Tough 2000 Resin V2 per 100 µm, lavate in una Form Wash V2 per 10+5 minuti in alcool siopropilico pari o superiore al 99% e sottoposte a polimerizzazione post-stampa a 70 °C per 12 minuti nu na Form Cure V2.

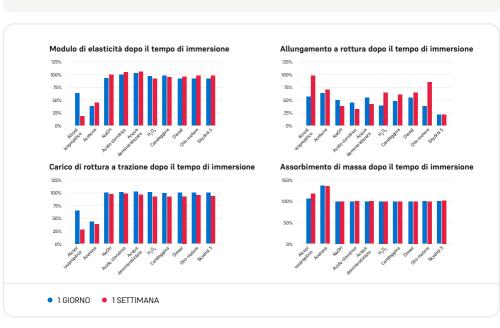
Proprietà del materiale ¹			METODO		
	Stato grezzo ²	Dopo polimerizzazione post-stampa ³			
Proprietà termiche ¹			METODO		
Temp. di distorsione termica a 1,8 MPa	45 °C	57 °C	ASTM D648-16		
Temp. di distorsione termicaa 0,45 MPa	53 °C	70 °C	ASTM D648-16		
Dilatazione termica (0-150 °C)	142.6 μm/m/°C	134.2 μm/m/°C	ASTM E831-19		
Infiammabilità	Test non eseguito	Superato	UL 94		
Proprietà elettriche¹			METODO		
	Dopo polimerizz				
Rigidità dielettrica	15.5	15.5 kV/mm			
Costante dielettrica (50 Hz)		3,46			
Costante dielettrica (1 kHz)		3,38			
Fattore di dissipazione (50 Hz)		0,018			
Fattore di dissipazione (1 kHz)		0,012			
Resistività di volume	3 * 1	0 ¹⁵ Ω-cm	ASTM D257-14		
Altre proprietà¹			METODO		
Durezza Shore D		61D			
Densità volume	1.0	1.09 g/mL		1.09 g/mL ASTM D	
Viscosità a 25 °C	20	2680 cP			
Densità del liquido	1.0	3 g/mL	ASTM D792-20		

COMPATIBILITÀ CHIMICA

Incremento percentuale di peso in 24 ore per un cubo di $1 \times 1 \times 1$ cm stampato, sottoposto a polimerizzazione e quindi immerso nei rispettivi solventi:

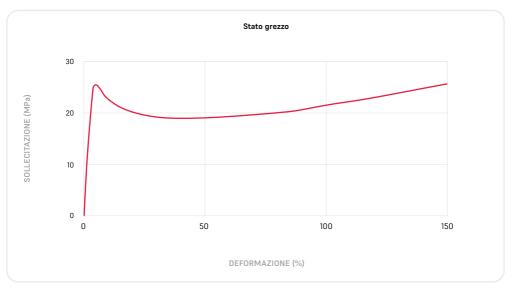
Solvente	Incremento di peso (%) in 24 ore	Solvente	Incremento di peso (%) in 24 ore		
Acido acetico 5%	0,17	Isoottano (benzina per motori)	21,24		
Acetone	22,92	Olio minerale (leggero)	0,12		
Alcool isopropilico	4,21	Olio minerale (pesante)	0,07		
Candeggina, NaOCl 5% circa	0,11	Acqua salina (NaCl 3,5%)	0,16		
Acetato di isobutile	18,65	Soluzione di idrossido di sodio (0,025%, pH 10)	0,18		
Combustibile diesel	0,08	Acqua	0,19		
Glicole dietilenico monometiletere	4,65	Xilene	27,69		
Olio per comandi idraulici	0,06	Acido forte (cloruro di idrogeno conc.)	1,96		
Skydrol 5	0,96	TPM	1,86		
Perossido di idrogeno (3%)	0,21				

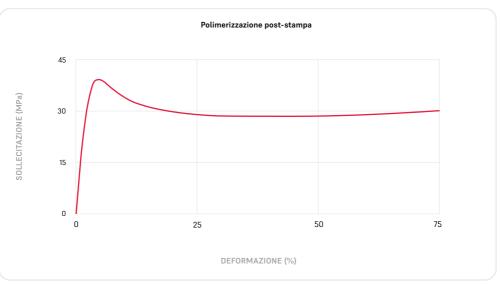
^{Le proprietà del materiale possono variare in base alla geometria} della parte, all'orientamento di stampa, alle impostazioni di stampa e alla temperatura.


 $^{^2}$ l dati sono stati ottenuti da parti stampate su una Form 4 con le impostazioni della Tough 2000 Resin V2 per 100 μm , lavate in una Form Wash V2 per 10+5 minuti in alcool isopropilico pari o superiore al 97%.

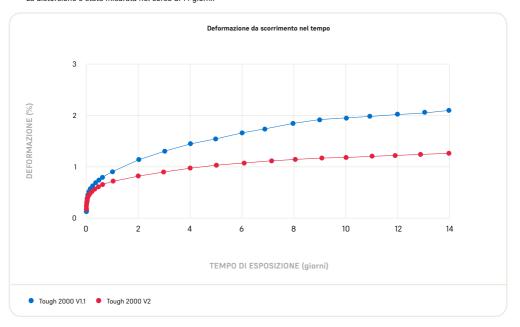
³ I dati sono stati ottenuti da parti stampate su una Form 4 con le impostazioni della Toogh 2000 Resin V2 per 100 µm, lavate in una Form Wash V2 per 10+5 minuti in alcool isopropilico pari o superiore al 99% e sottoposte a polimerizzazione post-stampa a 70 °C per 12 minuti in una Form Cure V2.

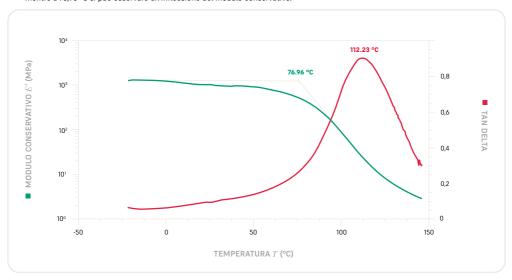
Compatibilità chimica (ASTM D543)


La compatibilità chimica è stata testata in conformità allo standard ASTM D543. L'effetto delle diverse sostanze chimiche è stato testato misurando modulo di elasticità e resistenza dopo diversi tempi di esposizione. I campioni analizzati sono stati conservati in contenitori e immersi nelle sostanze in questione per 1 giorno e 1 settimana. Una volta rimossi, i campioni esposti sono stati lavati e condizionati per 24 ore a 22 °C prima dei test meccanici. I test meccanici sono stati condotti in conformità alla norma ASTM D638 utilizzando barre di trazione di tipo IV in condizioni di laboratorio standard (22 °C). I risultati sono indicati come differenza percentuale dai valori misurati per i campioni non esposti.


Solvente	Alcool isopropilico	Acetone	NaOH (0.025% pH=10)	HCl (10%)	ACQUA demi- neralizzata	H ₂ O ₂ (3%)	Candeggina (~5% NaOCl)	Diesel	Olio motore	Skydrol 5
Modulo relativo										
1 giorno	63%	37%	93%	100%	103%	100%	98%	93%	92%	93%
1 settimana	18%	45%	100%	104%	106%	92%	95%	97%	98%	98%
Resistenza relati	va									
1 giorno	66%	43%	101%	102%	102%	102%	100%	101%	101%	101%
1 settimana	27%	39%	97%	99%	97%	93%	92%	92%	96%	94%
Allungamento re	lativo									
1 giorno	116%	131%	102%	100%	111%	81%	97%	113%	77%	43%
1 settimana	197%	144%	78%	65%	85%	133%	123%	131%	173%	45%
Massa relativa										
1 giorno	107%	139%	100%	100%	100%	100%	100%	100%	100%	102%
1 settimana	119%	137%	101%	100%	101%	101%	100%	101%	100%	103

Curva di trazione rappresentativa (ASTM D638-14)


Tipo I, 5 mm/min


Resistenza allo scorrimento ISO 6602

Formlabs ha valutato la resistenza allo scorrimento della Tough 2000 Resin V2 utilizzando la norma ISO 6602. Questo test misura il tasso di deformazione dei materiali a temperatura costante sotto un carico fisso. I campioni sono stati testati a 22 °C sotto un carico di 4 MPa. La distorsione è stata misurata nel corso di 14 giorni.

Analisi meccanica dinamica (DMA)

Il grafico mostra una curva DMA della Tough 2000 V2 da 0 °C a 150 °C a 3 °C/min. A 112,2 °C si osserva una transizione vetrosa, mentre a 76,96 °C si può osservare un'inflessione del modulo conservativo.

