

WHITE PAPER

formlabs

Nylon 12 Powder is a general purpose, versatile, and biocompatible material with high detail and great dimensional accuracy. As the go-to material for SLS 3D printing, it is ideal for both functional prototyping and end-use production of complex assemblies and durable parts with high environmental stability.

Nylon 12 Powder Technical Data Sheet

Mechanical Properties

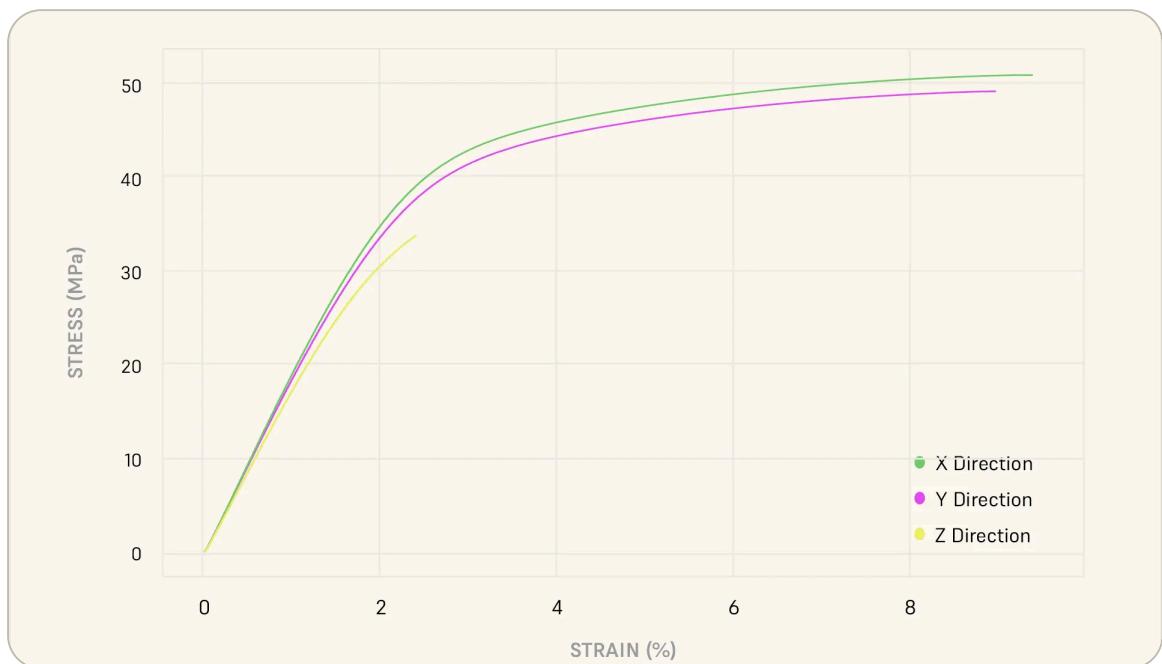
Tensile Properties

	NYLON 12 ²	METHOD
Ultimate Tensile Strength	50 MPa (7252 psi)	ASTM D638-14 Type 1
Tensile Modulus	1900 MPa (268 ksi)	ASTM D638-14 Type 1
Elongation at Break (X/Y)	11%	ASTM D638-14 Type 1
Elongation at Break (Z)	6%	ASTM D638-14 Type 1
TENSILE PROPERTIES AT LOW TEMPERATURE		
Ultimate Tensile Strength at -60 °C	67 MPa (9720 psi)	ASTM D638-14 Type 1
Tensile Modulus at -60 °C	2650 MPa (385 ksi)	ASTM D638-14 Type 1
Elongation at Break at -60 °C	3.40%	ASTM D638-14 Type 1

Flexural Properties

	NYLON 12 ²	METHOD
Flexural Strength	66 MPa (9.6 ksi)	ASTM D790-15
Flexural Modulus	1600 MPa (232 ksi)	ASTM D790-15

Impact Properties


	NYLON 12 ²	METHOD
Notched Izod	32 J/m (0.60 ft-lb/in)	ASTM D256-10
Gardner at 1.6 mm (1/16") thickness	0.45 J (4 in*lb)	ASTM D5420-21

General Properties

	NYLON 12 ²	METHOD
Shore Hardness	75 D	ASTM D2240-15
Density (Printed)	0.99 g/cc (0.0358 lb/in ³)	ASTM D792
Moisture Content (Powder)	0.25%	ISO 15512 Method D
Water Absorption (Printed Part)	0.66%	ASTM D570

Representative Tensile Curves

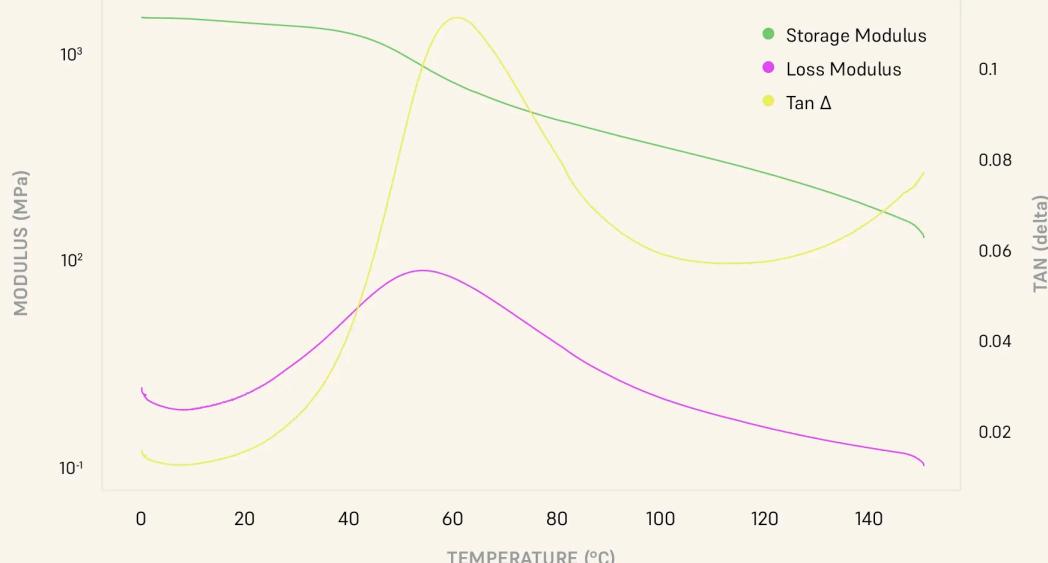
Samples were tested following ASTM D638, Type I in all three axes along the Fuse 1+. Each curve is a single sample chosen as representative and may not be representative of the average values of stress and strain. Samples were conditioned in a laboratory environment at 23°C, 50% relative humidity for 48 hours prior to testing.

Single Sample ASTM D638 Type 1 Bar Conditioned 23°C 50% RH

Representative Tensile Curves: Samples were tested following ASTM D638, Type I. The curve is a single sample chosen as representative and may not be representative of the average values of stress and strain. Samples were conditioned in a laboratory environment at 23°C, 50% relative humidity for 48 hours prior to testing.

Thermal and Electrical Properties

Thermal Properties


	NYLON 12 ²	METHOD
Heat Deflection Temp. @ 1.8 MPa	87 °C (189 °F)	ASTM D648-16
Heat Deflection Temp. @ 0.45 MPa	171 °C (340 °F)	ASTM D648-16
Vicat Softening Temperature	175 °C (347 °F)	ASTM D1525
Thermal Conductivity	0.428 W/m*K (2.97 BTU-in/hr-ft ² -°F)	ASTM D7984-16
Thermal Effusivity	787.4 W*s ^{0.5} / K*m ² (2.3 BTU /ft ² · hr ^{0.5} · °F)	ASTM D7984-16
Glass Transition Temperature (T_g)	60 °C (140 °F)	ASTM D4065-20
Coefficient of Thermal Expansion (-30-140 °C)	150.1 µm/m-°C (83.4 µin/in-°F)	ASTM E831-19
Flammability - 3.00mm (0.118 in) thick	HB	UL 94 Section 7

Electrical Properties

	NYLON 12 ²	METHOD
Surface Resistivity	1 x 10 ¹¹ Ω/sq	ASTM D257
	2.86 @ 6.78 MHz	ASTM D150-22
Dielectric Constant (k')	2.80 @ 13.56 MHz	ASTM D150-22
	2.74 @ 27.12 MHz	ASTM D150-22
	0.034 @ 6.78 MHz	ASTM D150-22
Dielectric Dissipation (D)	0.028 @ 13.56 MHz	ASTM D150-22
	0.008 @ 27.12 MHz	ASTM D150-22
Dielectric Strength	8.82 kV/mm (224 V/mil)	ASTM D149-20, Method A
Comparative Tracking Index	600 V	ASTM D3638
CTI 600 Compliance	Pass	IEC 60112:2020

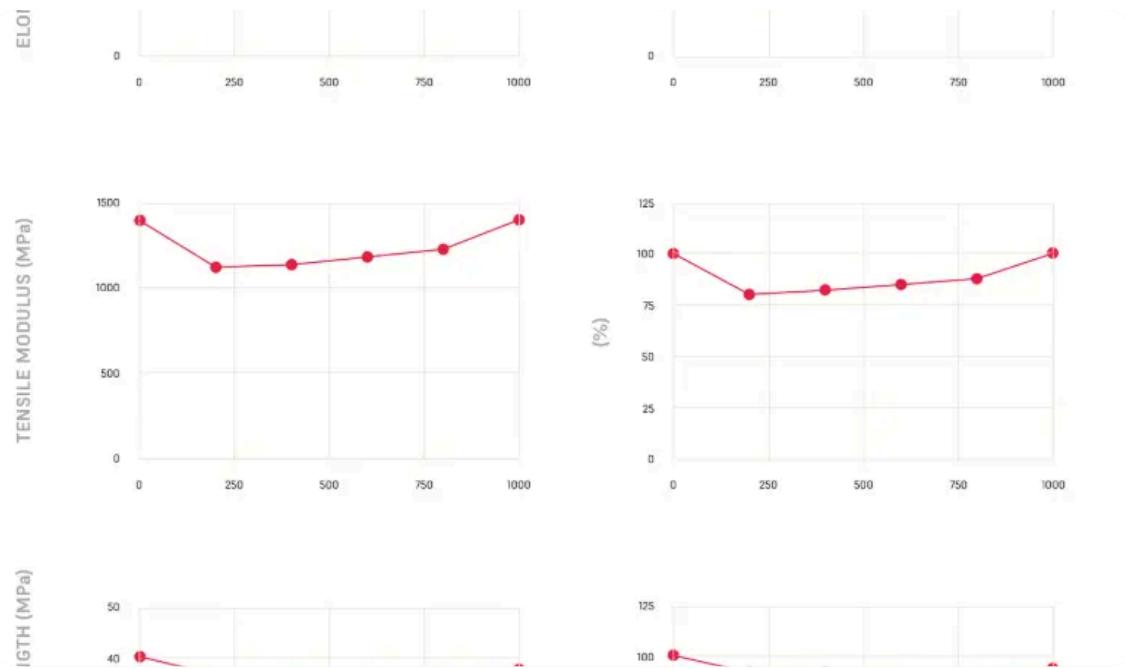

Dynamic Mechanical Analysis (DMA)

A DMA curve from 0 °C to 150 °C at 3 °C/min is shown.

Thermal Expansion by TMA

Sample was tested by ASTM E831-19 in a TMA. Ramp rate was 5 °C/min with a Ultra-High Purity Nitrogen purge of 50 cc/min.

UV Aging


Outdoor Aging ASTM D4329

Tested in accelerated outdoor weathering conditions according to ASTM D4329 (Cycle A). Test samples were exposed to defined conditions of heat, water condensation and UV light. Exposed samples were conditioned for 24 hours at 22 °C before mechanical testing. Control samples were stored at a constant 22 °C. Mechanical testing was conducted according to ASTM D638 at standard lab conditions (22 °C). "0 hrs" represents non-aged samples stored at 22 °C and tested 24 hours after post-processing.

Please note, accelerated weathering testing cannot fully represent all aging conditions. Formlabs recommends conducting additional testing relevant for your specific application needs.

HOURS EXPOSED	0 HOURS	200 HOURS	400 HOURS	600 HOURS	800 HOURS	1000 HOURS
Elongation at Break (%)						
at Break (%)	9.8	9.5	10.3	8.9	9.7	8.1
% of Initial EAB						
	100%	97%	105%	91%	99%	83%
Tensile Modulus (MPa)						
	1832	1794	1633	1854	1863	1764
% of Initial Tensile Modulus						
	100%	98%	89%	101%	102%	96%
Ultimate Tensile Strength (MPa)						
	50.76	49.32	49.17	49.06	50.64	48.91
% of Initial Tensile Strength						
	100%	97%	97%	97%	100%	96%

Biocompatibility

Samples printed with Nylon 12 has been evaluated in accordance with ISO 10993-1:2018, and has passed the requirements for the following biocompatibility risks:

ISO STANDARD DESCRIPTION	RESULT ^{3,4}
EN ISO 10993-5:2009	Not Cytotoxic
ISO 10993-10:2010/(R)2014	Non Irritant
ISO 10993-10:2010/(R)2014	Not a sensitizer
ISO 10993-11:2017	No Evidence of Systemic Toxicity
ISO 10993-11:2017	Non-Pyrogenic

Chemical Compatibility

Solvent Weight Gain

SOLVENT	24 HR WEIGHT GAIN, %
Acetic Acid 5%	0.1

SOLVENT	24 HR WEIGHT GAIN, %
Acetone	0.1
Bleach ~5% NaOCl	0.2
Butyl Acetate	0.2
Diesel Fuel	0.4
Diethyl glycol monomethyl ether	0.5
Hydraulic Oil	0.6
Hydrogen peroxide (3%)	0.2
Isooctane	<0.1
Isopropyl Alcohol	0.2
Mineral oil, heavy	0.7
Mineral oil, light	0.5
Salt Water (3.5% NaCl)	0.2
Skydrol 5	0.6
Sodium hydroxide solution (0.025% pH = 10)	0.2
Strong Acid (HCl Conc)	0.8
TPM	0.3
Water	0.1
Xylene	0.1

Chemical Compatibility ASTM D543

Tested for chemical compatibility according to ASTM D543. The influence of various chemicals was tested by measuring tensile modulus and strength after different exposure times. Exposed samples were stored in containers and fully immersed in the test chemicals for 1 day and 1 week. After removal, exposed samples were washed and conditioned for 24 hours at 22°C before mechanical testing. Mechanical testing was conducted according to ASTM D638 using Type 4

tensile samples at standard lab conditions (22°C). Results are reported as a % difference from the measured values of non-exposed samples.

1 Day Immersion

SOLVENT	RELATIVE MODULUS	RELATIVE STRENGTH	RELATIVE ELONGATION	RELATIVE MASS
IPA	100.44%	101.19%	117.35%	100.29%
Acetone	92.89%	97.95%	105.83%	100.19%
NaOH	102.99%	102.77%	120.19%	100.36%
HCl	96.53%	99.59%	100.52%	100.44%
DI Water	93.57%	100.43%	105.05%	100.43%
H ₂ O ₂	97.11%	102.92%	109.89%	100.34%
Bleach	92.25%	100.45%	104.39%	100.31%
Diesel	95.54%	98.61%	102.64%	100.44%
Motor Oil	101.92%	101.32%	108.10%	100.88%
Skydrol 5	97.57%	100.86%	107.26%	101.03%

1 Week Immersion

SOLVENT	RELATIVE MODULUS	RELATIVE STRENGTH	RELATIVE ELONGATION	RELATIVE MASS
IPA	94.97%	100.84%	110.49%	100.63%
Acetone	93.71%	99.13%	132.37%	100.43%
NaOH	95.66%	100.70%	122.75%	100.71%
HCl	91.56%	101.66%	111.25%	100.48%

SOLVENT	RELATIVE MODULUS	RELATIVE STRENGTH	RELATIVE ELONGATION	RELATIVE MASS
DI Water	85.37%	97.86%	112.44%	100.49%
H2O2	86.70%	98.58%	119.42%	100.76%
Bleach	92.31%	99.83%	113.74%	100.90%
Diesel	100.12%	101.68%	119.33%	100.51%
Motor Oil	95.30%	98.70%	95.41%	100.76%
Skydrol 5	102.48%	104.60%	113.59%	100.68%

Outgassing

The Outgas Test was performed in a vacuum environment of less than 5×10^{-5} torr according to ASTM E595, for a duration of 24 hours, at 125°C on three specimens per sample

OUTGASSING	NYLON 12	METHOD
TML	0.38%	ASTM E595
CVCM	<0.01%	ASTM E595
WVR	0.14%%	ASTM E595

Footnotes

1. Material properties may vary with part geometry, print orientation and temperature.
2. Parts were printed using Fuse 1, with Nylon 12 powder. Parts were conditioned at 50% relative humidity and 23°C for 7 days before testing.
3. Material properties may vary based on part design and manufacturing practices. It is the manufacturer's responsibility to validate the suitability of

the printed parts for the intended use.

4. Nylon 12 was tested at NAMSA World Headquarters, OH, USA.